

- 1 Soils signal key mechanisms driving greater protection of organic carbon under aspen
- 2 compared to spruce forests in a North American montane ecosystem
- 3 Authors: Lena Wang¹, Sharon A. Billings², Li Li³., Daniel R. Hirmas⁴, Keira Johnson¹, Devon
- 4 Kerins³, Julio Pachon⁵, Curtis Beutler⁶, Karla M. Jarecke¹, Vaishnavi Varikuti⁴, Micah Unruh²,
- 5 Hoori Ajami⁷, Holly Barnard⁸, Alejandro N. Flores⁹, Kenneth Williams⁶, Pamela L. Sullivan¹

- College of Earth Ocean and Atmospheric Science, Oregon State University. Address: 101 SW
 26th St, Corvallis, OR, 97331, USA
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey & Center for
 Ecological Research, University of Kansas.
- 3Department of Civil and Environmental Engineering, Pennsylvania State University,
 Address: Sackett, #212, University Park, PA 16802, USA.
- ⁴Department of Plant and Soil Science, Texas Tech University. Address: 2500 Broadway
 Lubbock, Texas 7940 USA.
- 5Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of
 Sydney, New South Wales, Australia. Address: The University of Sydney, NSW 2006, Australia.
- ⁶Lawrence Berkeley National Laboratory, Berkeley, CA USA Rocky Mountain Biological
 Laboratory, Gothic, CO USA. Address: 1 Cyclotron Road, Berkeley, CA 94720, USA.
- ⁷Department of Environmental Sciences, University of California Riverside. Address: 2460B
 Geology Building, Riverside, CA 92521USA.
- 8Department of Geography, Institute of Arctic and Alpine Research, University of Colorado –
 Boulder. Address: Guggenheim 110, 260 UCB Boulder, Colorado 80309-0260, USA.
- Bounder: Address: ddggermein 110, 200 deb bounder, colorado 60303 0200, 03A.
 PDEPARTMENT OF Geosciences, Boise State University, Boise Address: 1295 University Drive,
 Boise, ID 83706 USA.
- 25 Correspondence to: Pamela L. Sullivan(Sullipam@oregonstate.edu)

26

29

30

31

Highlights:

- 1. Soil organic carbon stocks are consistently greater under aspen compared to spruce
- 2. Microbial Efficiency Matrix Stabilization model helps explain SOC differences
- 3. Smaller aggregate sizes under aspen further help explain SOC stocks
- 4. A lower probability of SOC destabilization likely persists under aspen stands

323334

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Abstract

Soil organic carbon (SOC) is often retained more effectively in aspen-dominated forests compared to coniferous forests in North America, yet the reasons why are unclear. A potential driver could be differences in SOC protection mechanisms. Over decades to centuries, chemical (e.g., mineral association) and physical (e.g., aggregation) processes can work to preserve SOC stocks, which can vary across cover types. To investigate this hypothesis, we evaluate controls on SOC concentrations in the Coal Creek watershed (CO, USA), a montane ecosystem dominated by quaking aspen and Engelmann spruce and underlain by granite and sandstone. We examined a combination of biological, chemical, physical, and environmental conditions to evaluate potential abiotic and biotic mechanisms of SOC preservation at multiple depths. As expected, we observed greater SOC under aspen compared to spruce. Growing season soil moisture, temperature, and CO₂ and O₂ varied with slope position and aspect, and thus forest cover type. Dissolved organic carbon (DOC) was lower under aspen compared to spruce. Exoenzyme data indicate that aspen soil microbes exhibited greater effort to seek organicallybound resources; consistent with this, soil organic N exhibited higher $\delta^{15}N$ values, hinting at a greater degree of organic matter processing. Finally, aspen roots exhibited greater root abundance, and aspen mineral soils revealed smaller mean aggregate diameters compared to conifer sites. Our data suggest enhanced biotic activities in aspen-dominated forest soils that promote both chemical and physical protection of SOC in aspen- relative to spruce-dominated forests, and associated limitations on DOC export.

54 55

Keywords (1-7 words): Critical Zone, Ecohydrology, Montane Ecosystems, Soil Organic Carbon, Climate Change

565758

59

60

61

62

63

64

65

1 Introduction

The distribution and composition of temperate montane forests are changing (Alexander et al.,1987, Anderegg et al., 2013), driven by increasing air temperature, earlier snowmelt, earlier onset and extent of the growing season (Godsey et al., 2014; Mote et al., 2018; Rhoades et al., 2018), and increasing frequency and intensity of disturbance (e.g., drought, fire, logging, and insect infestation; Canelles et al., 2021). For example, aspen stands have lost substantial live density and basal area to Englemann spruce, sub-alpine fir, and Douglas Fir since 1964 with an increasing rate of decline since 1994 (Alexander, 1987; Coop et al., 2014). Changes in montane

66 forest cover can directly impact soil organic carbon (SOC) stability. Given that SOC regulates the 67 availability of nutrients, soil stability, ecosystem water fluxes, and biosphere-atmosphere 68 exchange of greenhouse gases (Jackson et al., 2017), and that global SOC reservoirs represent 69 far more C than plant biomass and the atmosphere (Scharlemann et al., 2014), unraveling 70 drivers of SOC stability remains an important research goal (Billings et al., 2021). Between 71 paired aspen and conifer stands at numerous sites throughout North America, SOC pools differ 72 substantially (review in Langaniere et al., 2017). Studies consistently show that carbon under 73 conifers is more readily destabilized than under aspen (Woldeselassie et al., 2012; Laganiere et 74 al., 2013; Boca et al., 2020; Román Dobarco et al., 2021). Further, SOC pools in aspen-75 dominated environments tend to be composed of larger stocks of mineral-associated organic 76 carbon (MAOC), which is a relatively stable SOC fraction, than those under conifers (Román 77 Dobarco et al., 2021). Yet, the mechanisms driving such differences in SOC stability under aspen 78 and conifer remain elusive. 79 Examining soil physical attributes and how they can differ with plant cover type may help us 80 understand differences in MAOC fate in aspen vs. conifer forests. For example, soil aggregation 81 is a key process promoting SOC protection in many soil types (Blanco-Canqui and Lal, 2004). Soil 82 aggregation refers to the clustering or binding of soil particles into larger units. This process is 83 promoted by interactions among colloidal material and binding compounds (microaggregates; 84 Six et al., 2004; Blanco-Canqui and Lal, 2005; Weil and Brady, 2017; Araya and Ghezzehei, 2019) and among particulate organic carbon (POC; Cotrufo et al., 2019), and clay minerals or clay-85 86 sized particles (Six et al., 2000). The collapse and formation of aggregates influence the protection of SOC. For example, the breakdown of macroaggregates into microaggregates often 87 88 leads to the release of dissolved organic carbon (DOC) (Cincotta et al., 2019), some of which can 89 undergo microbial uptake and mineralization to CO2. In contrast, aggregate formation can limit 90 soil microbial access to SOC on aggregates' interiors, helping to shield it from exo-enzymatic 91 attack (Jastrow 1996; Six et al., 2000; Woolf et al., 2019). 92 Multiple mechanisms may drive differences in soil aggregation across aspen and conifer soils. 93 First, soils beneath conifers are often more acidic (Poponoe et al., 1992; Buck and St. Clair, 94 2012) and thus may promote a greater abundance of relatively small aggregates, given that 95 increases in soil solution [H⁺] can weaken soil aggregation processes (Stătescu et al., 2013). 96 Second, differences in rooting abundance among aspen and conifers may drive differences in 97 aggregate formation across these cover types. Aspen tends to produce shallow roots that 98 generally extend to ~ 30 cm deep (Sheppard et al., 2006), while conifers tend to develop both 99 lateral and tap roots, the latter of which can extend relatively deep into the soil and bedrock 100 (Mauer et al., 2012). Spruce tends to exhibit lower fine root biomass compared to aspen 101 (Mekontchou et al., 2020). Fine roots may promote aggregate formation through enmeshment 102 processes, while coarse roots may promote aggregate collapse because of roots perforating

104 driven by differences in aspect, foliar cover, and transpiration rates (Buck and St. Clair, 2012) 105 may also influence aggregate stability, as rapid changes in soil moisture can cause aggregates to 106 burst while a gradual increase in moisture can stabilize aggregates (Amezketa, 1999). 107 Combined, these concurrent and competing processes may drive differences in soil aggregation 108 between aspen- vs. conifer-dominated soils in ways that are difficult to predict due to complex 109 and non-linear interactions, and require the synthesis of findings across biological and 110 pedological disciplines to understand. 111 Soil moisture and temperature not only influence physical aggregation processes, and thus the 112 protection and preservation of SOC, but also the degree to which microbes transform SOC into 113 CO₂ or alter the transport of organic C pools to depth. Where soil moisture is higher, greater 114 transport of organic C pools into the subsurface may be feasible, potentially increasing the amount of organic matter sorbed to minerals at greater depths (Mittuka et al., 2019). 115 116 Conversely, DOC leaching may increase, and subsequent DOC export could reduce SOC concentrations (Roulet and Moore, 2006; Monteith et al., 2007). Soil temperature also may 117 118 drive differences in SOC transformations across aspen and conifer sites, given that aspect exerts 119 strong control on aspen distribution. Soil temperatures tend to be warmer under the sunnier, 120 aspen-dominated stands compared to conifer stands (Buck and St. Clair, 2012). In a 121 temperature-limited montane system, warmer temperatures under aspen stands may increase 122 microbial metabolic activity and turnover, and thus accelerate microbial necromass formation, 123 a process linked to greater stocks of relatively persistent SOC (Liang et al., 2019), perhaps due to necromass-promoting aggregate formation and stabilization (Sae-Tun et al., 2022). Thus, 124 125 understanding soil hydrologic behaviors as well as solute transport down-profile, traditionally 126 the realms of hydrologists and soil biogeochemists, in addition to biological and pedological 127 processes, is important for understanding patterns of SOC transformations. 128 Finally, differences in the chemical composition of aspen and conifer biomass and their root 129 exudates may explain differences in MAOC stocks between the two stand types (Boca et al., 130 2020). For example, aspen litter tends to exhibit lower lignin concentrations than coniferous 131 litterfall (Moore et al., 2006). The Microbial Efficiency - Matrix Stabilization (MEMS) framework 132 (Cutrofo et al., 2013) would suggest this more labile plant material may be easier for soil 133 microbes to assimilate and transform into microbial necromass, which can become more 134 physically or chemically protected through aggregation and chemical bonding (Kleber et al., 135 2007; von Lützow et al., 2008; Cutrofo et al., 2013) and lead to relatively more persistent stocks of SOC (Liang et al., 2019; Buckridge et al., 2022). Differences in microbial activities between 136 137 aspen and conifer may further be exacerbated by differences in root exudation between these 138 species. For example, Norway spruce can exhibit lower exudation rates than silver birch (Sadnes 139 et al., 2005), and deciduous trees appear to experience greater exudation rates than pines

aggregates (Bronick and Lal, 2005). Differences in soil moisture between aspen and conifers

140 (Wang et al., 2021). Though many studies explore the biotic, chemical, physical, and hydrologic 141 processes that can influence SOC transformations and preservation, these processes are rarely 142 examined in tandem. Thus, it remains unclear why conifer-dominated forests consistently 143 harbor smaller amounts of SOC, and why aspen-dominated forests exhibit greater SOC 144 stabilization. 145 Here, we use a holistic, critical-zone approach (Chorover et al., 2007) to understand SOC dynamics and drivers. We explore a suite of abiotic and biotic factors as they relate to SOC 146 147 pool sizes across two forest cover types at Coal Creek, a watershed in central Colorado, USA, 148 dominated by Englemann spruce (Picea engelmanni) on the north-facing hillslopes, and aspen 149 (Populus tremuloides) on the south-facing hillslopes. Coal Creek has experienced relatively high 150 variability in stream water DOC concentrations in recent years (2005-2019; Leonard et al., 2022). The mysterious, almost tripling of stream DOC concentrations in some years (2018-2019) 151 may indicate recent shifts in upslope biogeochemical processes such as greater forest stress 152 153 associated with climate change (Leonard et al., 2022) and subsequent changes in hydrologic 154 flow paths (Zhi et al., 2020; Kerins et al., 2023) that influence C transport from soil profiles to 155 stream water. We test the hypothesis that oft-observed greater stocks of SOC in soils under 156 aspen stands compared to conifer-dominated soils are linked to greater soil microbial activities 157 in aspen stand soils. We further hypothesize that relatively stable microaggregates are more abundant in aspen-dominated soils than spruce-dominated soils, resulting from higher 158 159 microbial activities, and thus higher necromass production rates. Differences in rooting 160 strategies and ecohydrology (e.g., evapotranspiration, soil moisture) between aspen and spruce 161 stands will likely exert a secondary control on carbon stability. We finally hypothesize that the 162 proliferation of fine roots in aspen-dominated soils are linked to smaller water-stable 163 aggregates, and the generally coarser and deeper roots under spruce facilitate the transport of 164 moisture and dissolved carbon down through the soil profile to a greater extent than under 165 aspens, a process directly linked to DOC export to streams. 166 To test these hypotheses, we quantified multiple metrics describing basic abiotic conditions, 167 SOC pools, soil microbial activities, soil aggregate-size distributions, and rooting distributions on 168 five hillslopes dominated by either spruce or aspen, underlain by two contrasting lithologies 169 and located at two hillslope positions (i.e., backslope and footslope). We aim to clarify some of 170 the mechanisms governing aspen- and conifer-dominated forest soil microbial activity, soil 171 aggregation, and soil moisture dynamics and their impact on SOC protection and DOC transport 172 into surface water, illuminating the possible trajectories of SOC and DOC in rapidly changing, 173 montane forest watersheds. 174

2 Study Area

175 176

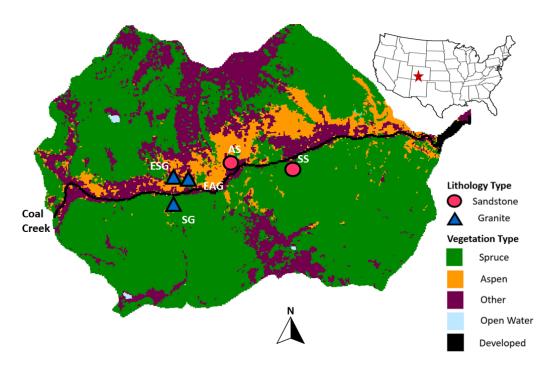


Figure 1: A map of the Coal Creek catchment. Colors represent land cover types, where aspen (orange) are dominantly at lower south-facing slopes while conifer (green) are on both north and south facing slopes. Shape represents lithology type where granite sites (blue triangles) are in the western part of the catchment and sandstone sites (pink circles) are in the eastern part of the catchment. AS is aspen sandstone, and SS is spruce sandstone. ESG and EAG are spruce granite and aspen granite, respectively. They are in Elk Creek, a sub catchment of the Coal Creek catchment. While ESG is on a dominantly south facing slope, it is north facing within the Elk Creek catchment. SG is also a spruce granite site. Note that all sites reside at contrasting hillslope positions: backslope = AS and SG, and footslopes = SS, ESG, and EAG.

Coal Creek (53 km²) is a high-elevation (2715 m), headwater tributary of the Upper Colorado River Basin located in the Colorado Rocky Mountains near the town of Crested Butte (Fig. 1). Coal Creek is a sub-catchment of the larger East River watershed (300 km²) and falls within the research domains of the U.S. Department of Energy funded Watershed Function Science Focus Area and Rocky Mountain Biological Laboratory (RMBL). The watershed is seasonally snow-covered from November through June. The area has a continental, subarctic climate with long, cold winters and short, cool summers. The mean annual temperature (1981-2019) is ~9 °C, with an average yearly minimum and maximum of -1.5 °C and 9 °C, respectively (Kerins et al., 2024). Average annual precipitation is 850 mm (Jiang et al., 2023), with approximately 60% falling as snow between October and May. This area has been warming since the 1980s and the fraction of snow has been decreasing roughly at 1% per year (Zhi et al., 2020). Due to these warming temperatures, the growing season in Crested Butte appears to be extending (Wadgymar et al., 2018).

The geology of Coal Creek is underlain by sandstone, siltstone, shale, and coal units from the
 Mesa Verde Formation, variegated claystone and shale from the Wasatch Formation, and some

202 intrusive granite diorite, granite, quartz, and monzonite that are Middle Tertiary aged (Gaskill et

al., 1991). Soils are predominantly mapped as Alfisols, Mollisols, and Inceptisols (Soil Survey

204 Staff, 2023).

Spruce, aspens, and alpine meadows can be found in the Coal Creek watershed. North-facing slopes are dominated by Engelmann Spruce, while aspen and Engelmann spruce can be found on south-facing slopes.

3 Methods

To quantify the impact of aspen vs. conifer land cover on soil organic carbon dynamics at Coal Creek, we dug two pits roughly one meter deep at all five sites. The first series of pits were dug in the summer 2020 and 2021 (Table 1). The second series of pits were dug in the summer of 2022. Aspen was dominant at two sites (AS and EAG), while spruces were dominant at three sites (SS, ESG, and SG). Because aspen- and conifer-dominated forests in this region tend to occur on hillslopes of contrasting aspects, it was not possible to isolate land cover from aspect affects (e.g., temperature, radiation). While the sites were selected based on their land cover, other key ecosystem features underlying lithology (either granite or sandstone), and hillslope position (either backslopes or footslopes) (Fig. 1) also differed across the sites. We address these site features as potential sources of variation in our response variables in the discussion.

Soil pits were described following Schoeneberger et al. (2012), then each pit face was photographed with a high-resolution, digital single-lens reflex camera (D5600, Nikon, Minato City, Tokyo, Japan) to quantify rooting depth distributions following Billings et al. (2018). Bulk soil samples were collected by depth every 10 cm for the first set of pits (2020-2021), and by horizon for the second set of pits (2022). Samples were then immediately stored in a refrigerator or freezer until they could be ground, sieved to 2 mm and analyzed. Twice in the summer of 2022 (late June and mid-August), soil was collected by auger within ~100 meters of each pit to characterize heterogeneity in soil chemistry. Soils were augured at 10 cm intervals to 110 cm (or deepest depth), and samples were stored in coolers with ice packs in the field and then transported back to the lab and stored at 4 °C (most analyses) or frozen (DOC and microbial biomass C, exo-enzyme assays, nitrate).

Table 1. Sampling design and analysis for the soil pits and augers samples.

	Soil Pits	Soil Pits	Auger Samples
Timing	2020-2021	2022	2022 (June and August)
Total Depth (cm)	~110	~110	~110
Soil Sampling Intervals	10 cm	Horizon	10 cm
Soil moisture and gas sensors	3 depths (15, 45, 110 cm)		

Root Distributions	X	X	
%C and %N	X	X	X
Extractable nitrate concentrations		X	
$\delta^{15}N$		X	
рН	X	X	X
Effective cation exchange capacity (ECEC)	X		
Texture	X		
Wet aggregate size distribution (ASD)		X	
Dissolved organic carbon (DOC)		X	X
Microbial biomass carbon		X	
β-glucosidase and N-acetyl-β-D-glucosaminidase		X	

238

239

240

242

243

244

245246

247248

249

250

251

252

253

254

255

256

3.1 Measuring Soil Organic Carbon and Nitrogen Dynamics

We assessed SOC concentrations and stocks, and the likelihood of SOC degradation by microbes by analyzing bulk soil samples at 10-cm intervals for %C, %N, and carbon to nitrogen ratio (C:N).

236 The %C and %N were determined by completing dry combustion on 70-100 mg of soil sample.

237 After combustion, the sample was analyzed on an elemental analyzer (Vario Macro Cube,

Elementar, Ronkonkoma, NY). To determine the overall stock of SOC per horizon (Zeng et al.,

2021), we used %C and the soil bulk density from each horizon. Bulk density was measured

using a three-dimensional laser scanner (3D Scanner Ultra HD, NextEngine, Inc., Santa Monica,

241 CA) following Rossi et al. (2008).

We measured dissolved organic carbon (DOC) to estimate organic carbon that can be easily mobilized and transported out of the soil profiles. We analyzed soil samples at 10-cm intervals that were collected at each site during the growing season. Soil samples were extracted within three months of collection date. A total of 7.5 g of soil at field capacity was extracted with 30 ml of simulated rainwater (Laegdsmand et al., 1999). Samples were placed on a shaker table for 30 minutes and then centrifuged at 4800 RPM for 15 minutes. Samples were filtered through 0.45 μ m syringe filters and 50 ml acid washed syringes. Filtered samples were stored in 10 ml centrifuge tubes, frozen and shipped overnight in a cooler with dry ice to the University of Kansas. DOC was analyzed from the thawed samples using a Violet-pink Mn (III)-pyrophosphate solution and a microplate reader (Biotek, UT).

To better understand the potential for microbial activity in these soils, we quantified microbial biomass carbon by horizon from pits dug in summer 2022 (Brooks et al. 1985). We exposed 5 g of each soil sample to chloroform for 24 h. To these fumigated sub-samples and to 5 g of unfumigated sub-samples, we added 20 ml of 0.5 M K_2SO_4 and shook for 30-40 minutes at 220 rpm. These samples were filtered through a 0.45 μm filter and their DOC concentration was

257 determined via colorimetry (Bartlett and Ross 1988) on a Synergy HT microplate reader 258 (Agilent, USA). We further measured the activity of two extracellular enzymes linked to 259 microbial C and N acquisition (β-glucosidase and N-acetyl-β-D-glucosaminidase, herein referred 260 to as BGase and NAGase, respectively) to develop some metrics of how actively and efficiently 261 soil microbes in these soils can induce the decay of soil organic matter (Sinsabaugh and 262 Moorhead, 1994; Allison et al., 2011, Stone et al., 2014). Measurements of 4-263 methylumbelliferyl β-D-glucopyranoside were used to quantify BGase activity and 264 measurements of 4-methylumbelliferyl N-acetyl- β-D-glucosaminide were used to quantify 265 NAGase activity on samples collected by horizon. To obtain these measurements approximately 266 1 gram of soil was blended by hand for 30 seconds with 125 mL of pH-adjusted 50 mM sodium acetate. The blended sample was pipetted into the desired substrate and incubated at 25 °C for 267 268 18 hours. Fluorescence from a Synergy HT plate reader (Agilent, USA) was used as a proxy for 269 each enzyme's capacity to cleave monomers from the respective molecules undergoing decay 270 (DeForest, 2009; German et al., 2011). 271 We quantified salt-extractable NO₃⁻ because of its importance as a biotically-available form of 272 N, and also because of its status as a readily leachable ion. As such, it can serve as an indicator 273 of each soil's capacity to undergo elemental loss in surface soil with hydrologic fluxes. We 274 extracted ~10 g (fresh weight) of each soil sample with 0.5M K₂SO₄ and repeated the shaking 275 and filtering steps described above for MBC. Extracts were analyzed for NO₃⁻ (Synergy HT, 276 Agilent, USA) using Shand et al. (2008), a microplate-based approach that relies on hydrazine 277 sulphate and sulphanilamide to generate a color intensity directly related to NO₃-278 concentration. 279 We also quantified soil organic matter $\delta^{15}N$, given these signatures' value as an indicator of the 280 degree to which soil microbes have processed soil organic matter (Nadelhoffer and Fry 1988; 281 Billings and Richter 2006). Sub-samples of each soil were dried, ground to fine powder, and weighed into a tin capsule for analysis. Values of $\delta^{15}N$ were obtained at the Kansas State 282 University Stable Isotope Lab, where an Elementar EA Vario Pyrocube linked to an Elementar 283 284 GeovisiON Isotope Ratio Mass Spectrometer determine N concentration and δ^{15} N, respectively. 285 3.2 Measuring Soil Chemical and Physical Properties To better assess possible differences in the chemical and physical controls on SOC stability we 286 287 also measured pH, effective cation exchange capacity (ECEC), soil texture, and wet aggregate 288 size distribution (ASD). We focused on pH as it is known to strongly control microbial 289 communities and mineral associated organic carbon (MAOC) (Kleber et al., 2015). The soil pH 290 was determined in a 1:1 soil slurry (Soil Survey Staff, 2022). We focused on ECEC because ECEC 291 has a high positive correlation with SOC, clay content, and aluminum and iron oxides (Solly et 292 al., 2020), which are highly correlated with the formation of MAOC (Kleber et al., 2015). ECEC 293 was determined by summing Ca, Mg, and K extracted using a Mehlich-3 solution (Culman et al.,

295 soils samples had a pH of <7.5 and there is very little to no calcium carbonate. In these conditions Mehlich-3 and ammonium acetate extractions yield similar ECEC values (Rutter et 296 297 al., 2021). 298 We examined soil texture at each pit for several reasons. First, the total amount of clay is 299 important to MAOC, and second, texture is known to impact the distribution and connectivity 300 of pores. This connectivity influences how easily oxygen can diffuse into a soil profile and thus 301 processes such as microbial respiration (Schjønning et al., 1999; Moldrup et al., 2001), and 302 further regulates water and solute transport down-profile. Soil texture was analyzed on pit 303 samples collected from 2020-2021 using a laser diffraction (LD) unit (Bettersizer S3, Bettersize 304 Instruments, Dandong, Liaoning, China). Five grams of soil was ground and sieved to 2 mm, and 305 organic matter was removed by treating samples with 30% hydrogen peroxide. Ten ml of 10% sodium hexametaphosphate (HMP) was added to the solution to prevent flocculation. The soil 306 307 solution was pipetted into the Bettersizer until obscuration levels were between 14-20. We set 308 clay-silt and silt-sand boundaries to be 6.6 and 60.33 µm, respectively (Makó et al., 2017). 309 Aggregate-size distributions were measured on each soil horizon following Nimmo and Perkins 310 (2002). Briefly, around 25 g of the largest air-dried aggregates were fully saturated with a 311 Dickson apparatus (Dickson et al., 1991), and placed on a Yoder device where sieves (#4, 10, 17, 312 70) and soil samples were raised and lowered in the water 2.8 cm per stroke at a rate of 36 313 strokes per a minute for 10 minutes. Following this agitation in water, the sieves with their 314 respective aggregates were placed in a drying oven at 105 °C for 12 hours. The soil material 315 remaining on each sieve was dispersed with 200 ml of 2 g L⁻¹ HMP, mixed for 10 minutes, 316 passed through the sieve again, and oven dried at 105 °C for 2 hours. Weights were recorded 317 and mass fractions of water-stable aggregates were then calculated. Sieves divided aggregates 318 into 5 classes: aggregates > 4.76 mm, aggregates between 2-4.76 mm, aggregates between 319 0.21-1 mm, and aggregates less than 0.21 mm. To simplify our analysis, we agglomerated these 320 into 3 classes following Souza et al. (2023): fine aggregates (< 0.21 mm), intermediate 321 aggregates (0.21-4.76 mm), and coarse aggregates (> 4.76 mm). A weighted geometric mean 322 aggregate diameter (GMD) was calculated for each triplicate using the mass fractions of each 323 aggregate-size class; the mean and standard deviation were calculated from these triplicate 324 values to represent the aggregate diameter of each sample. The GMD values were divided by 325 SOC content and the resulting values were used to characterize the propensity of carbon to 326 form aggregates. 327 3.3 Measuring Rooting Distributions 328 To determine the relationship between roots, and carbon stability and transport, we measured the fraction of soil volume containing fine and coarse roots throughout the soil profiles using 329 330 images collected from all 10 pits (e.g., 2020/2021 and 2022). Each image was overlain with a

2019). Mehlich-3 extraction was used instead of an ammonium acetate extraction, because the

331 1x1 cm grid and analyzed using ImageJ (Schneider et al., 2012). The presence of a fine root 332 (diameter < 1 mm) or coarse root (diameter > 1mm) was noted for each grid cell. Our focus is 333 the soil volume containing roots and thus directly influenced by roots. As such, only 334 presence/absence and not count data were recorded, and in any cell containing both fine and 335 coarse roots the presence of only the coarse root(s) was recorded given their greater volume 336 (Billings et al., 2018). These measures are thus a conservative measure of direct root influence 337 on soil volumes, derived at the cm scale for soil pedons. Centimeter-scale cell 338 presence/absence data were transformed into the fraction of each 1-cm thick layer containing 339 roots. 340 3.4 Sensor Data 341 Soil sensor arrays were installed in the first set of pits (2020/2021) at the completion of 342 sampling. Sensors were installed at depths of 15 cm, 45 cm, and 110 cm (or deepest depth) to monitor soil temperature (°C) and volumetric water content (VWC; EC-5, Meter Group, 343 344 Pullman, WA), matric potential (kPa) (Teros 21, Meter Group, Pullman, WA), O₂ concentration 345 (%) (IB201806, Apogee Instruments, Logan, UT) and CO₂ concentration (ppm) (F0275476, Eosense, Dartmouth, Canada). Data were collected every 30 mins for moisture, matric 346 347 potential, and temperature and hourly for O₂ and CO₂ given the power requirements. We focus 348 on CO₂ and O₂ as they are indicators of soil microbial and root biotic activities including 349 heterotrophic respiration. Microbial activity directly and indirectly affects the formation of 350 MAOC, SOC stabilization, and microaggregation (Dohnalkova et al., 2022). We used sensor data 351 to investigate additional environmental controls on carbon dynamics. We converted O₂ from 352 ppm to % by adding calibrated values to the ppm value of O2. Each calibrated value was specific to the sensor installed and determined prior to installation. To focus on the growing season, we 353 354 selected data from June 15-August 29, which was 14 days before the first sample was collected 355 (June 29th) and ending 14 days after the last sample was collected (August 15th). AS reflects 2021 data, SS reflects average daily 2021 and 2022, and ESG, EAG, and SG reflects 2022 data. 356 357 These differences were because pits were installed with sensors in different years and some of 358 the instrumentation had power outages and other unforeseen issues. We averaged daily 359 temperature and VWC by week and examined average and standard deviation of the O₂ and 360 CO₂ over the growing season.

361 362

363 364

365

366

367

368

3.5 Data Analysis

Spatial replicates controlling for all ecosystem-scale factors were not feasible in this study. Instead, we advance our understanding of SOC stability by examining a more diverse suite of biotic and abiotic ecosystem characteristics than is often the case in SOC-focused work. Our work begins to unravel the complex interactions among cover type characteristics, soil properties, and hydrologic settings in SOC dynamics. We used linear mixed effects (LME) methods via the R package *Ime4* (Bates et al., 2014) to assess the influence of vegetation type,

370

371

372

373374

375

376

377

378

379

380

381

382

383

384

385

386

387

depth, and their interaction on soil abiotic conditions, various forms of soil nitrogen and carbon, ASD, and root abundances. We tested if variables were normally distributed using the Shapiro-Wilks test, and transformed the data to achieve a normal distribution if they were nonnormal. The soil chemical properties of SOC, EOC, EOC; EOC; ECEC were log transformed, while C:N data were transformed with the function $x^{1/3}$. Root fractions and soil solution pH did not require transformation to meet model assumptions. We assessed if vegetation type exerted a meaningful influence on the previously mentioned variables by constructing four models. The two simplest models included only vegetation type or depth, both as fixed effects. A third model included those fixed effects additively (e.g., Vegetation + Depth), and a fourth model included their interaction. We resolved the lack of independence of soil depth within each pedon by incorporating site identifiers as a random effect term in the model. We then tested the normality of the model residuals using Shapiro-Wilk test. For all models that passed this test, we compared the model fits using analysis of variance (ANOVA) and visually examined model residual errors for homogeneity of variance; the best model fit was selected based on the lowest Akaike information criterion (AIC) following Hauser et al. (2020). We interpret the results of these LME models conservatively, given the low number of replicate sites for each land cover type. We could not perform a LME model on microbial biomass and enzyme data due to the relatively limited number of samples. This limited our ability to run LME models on depth interactions with vegetation.

388

389

390

396

397

398

399

400

401

402

403

404

405

406

407

4 Results

4.1 Soil Properties and Development

Clay, silt, and sand content at the aspen sites (AS and EAG; Fig. S1) and one of the conifer sites (ESG) remained constant with depth (average 33.1% clay and 18.8% sand), while texture was more variable in the other conifer sites (SS and SG; Fig. S1). Soil ECEC was similar among the aspen and conifer sites with averages of 7.2 ± 4.9 and 8.2 ± 6.8 (meq/100 g soil), respectively, with elevated values at the surface which followed an exponential decline with depth (Fig S2).

Soil profiles were described to approximately 100 cm (Fig. 2, Table. S1). All sites had weak to moderately strong subangular blocky structure throughout the soil profile, and most sites had weak to moderately strong granular structure in A and upper B horizons. Dendritic tubular pores, interpreted to be abandoned root channels, were present throughout the soil profile of aspen sites, while they were less common in the conifer soil profiles. Aspen sites exhibited faint organic stains and organoargillans (i.e., dark, organic stained clay films) throughout the soil profile, while conifer sites had clay bridges and krotovina throughout the soil profile. The krotovina suggest greater bioturbation under conifer than aspen. Both vegetation types exhibited ferriargillans (i.e., clay coats that include Fe oxides), clay films, and charcoal, although ferriargillans and clay films were more prominent under conifer. Clay bridges, organoargillans, and ferriagllians indicate illuviation. Lithologic discontinuities were identified in SS, ESG, and EAG indicating colluvial inputs into these footslope pedons.

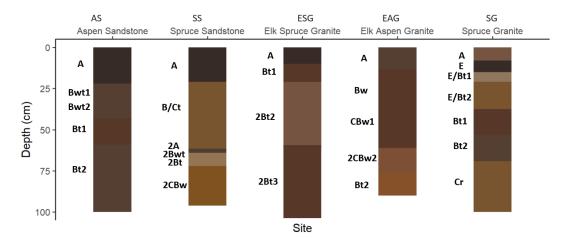


Figure 2: Soil profiles described at each site showing which depths were aggregated into A, upper B, and lower B horizons. Horizon colors represent the moist color of the soils as matched to the soil-color or Munsell chart.

Soils at both aspen sites (AS and EAG) were classified as Ustic Haplocryolls with thick SOC-enriched surface horizons (mollic epipedons) and showing evidence of incipient subsoil development in the form of moderately thick cambic horizons. Soils under conifer sites were classified as Typic Haplocryepts (SS and SG) and Eutric Haplocryalfs (ESG). Although surface horizons under conifer were not as well-developed (ochric epipedons), the subsurface showed similar incipient pedogenesis in the form of cambic horizons for SS and SG and greater development in the case of ESG where an argillic horizon was identified between 19-90 cm below the mineral surface.

4.2 Soil abiotic conditions

To understand how soil abiotic conditions are linked to SOC forms and processing pathways, we focused our analysis of soil temperature and moisture during the growing season (June – August; Fig. 3). As expected, soil temperature increased at all sites as the growing season progressed peaking in mid to late July, with the warmest temperatures observed near the surface and lower variability observed at depth. We also observed that the aspen sites (AS & EAG), which are on south-facing slopes, are warmer than conifer sites with an average surface soil (15 cm deep) temperature of 14.3 ± 1.2 and 10.4 ± 1.0 °C, respectively, during the growing season. Aspen sites were generally drier than conifer. The average volumetric water content in the surface soils (15 cm deep) at aspen sites was 0.15 ± 0.05 and the average volumetric water content at spruce sites was 0.24 ± 0.05 cm³.

We also examined soil pH and found the average pH across the entire soil profile was similar at the aspen and spruce sites, 5.6 ± 0.3 and 5.3 ± 0.4 , respectively, but their depth trends differed with spruce soils having slightly more acidic pH near the surface compared to the aspen (Fig. S2). This trend reversed after approximately 60 cm where the aspen soils became slightly more acidic compared to the conifer soils.

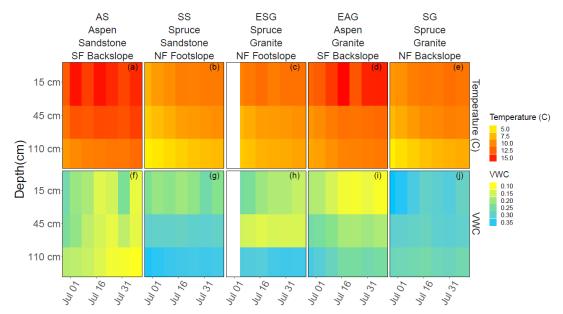


Figure 3: Temperature (a-d; °C) and volumetric water content (VWC (cm³ cm⁻³); e-i) data for aspen sandstone (AS; a, f), spruce sandstone (SS; b, g), spruce granite (ESG; c, h), aspen granite (EAG, d, i), and spruce granite (SG; e, j). AS reflects 2021 data, SS reflects averaged 2021 and 2022, ESG, EAG, and SG reflects 2022 data.

4.3 Soil Organic Carbon and Nitrogen

Across all sites, SOC concentrations ranged from $46.0\text{-}62.6 \text{ mg g}^{-1}$ near the surface (5 cm deep) to 4.8 to 29.0 mg g $^{-1}$ at depth (65 cm deep), while SOC stocks had a similar range across depth with value observed between 0.005-1.31 kg m $^{-2}$. SOC concentrations and stocks were generally higher under aspen compared to spruce sites (Fig. 4a-b). The LME models suggested vegetation interacts with depth to exert a meaningful effect on SOC (p-value < 0.001), whereby both SOC declines with depth for both vegetation types but to a greater extent under spruce compared to aspen. In contrast to SOC, DOC was higher under the spruce stands compared to the aspen (Fig. 4c). The DOC concentrations also declined with depth but this decline was more muted than that of SOC concentrations. The additive effect of vegetation and depth appeared to have a more meaningful effect on DOC than a vegetation-depth interaction. The ratio of DOC (μ g g $^{-1}$) to SOC (μ g g $^{-1}$) appeared higher at the spruce sites compared to the aspen (Fig. $^{-1}$ d). The ratio under both vegetation types increased with depth, ranging from $^{-1}$ d to $^{-1}$ d. The LME model suggests vegetation-depth interactions have the most meaningful effect on DOC:SOC. Both greater SOC and lower DOC:SOC under aspen, in comparison to spruce, suggest that different processes drive SOC dynamics under these two vegetation types.

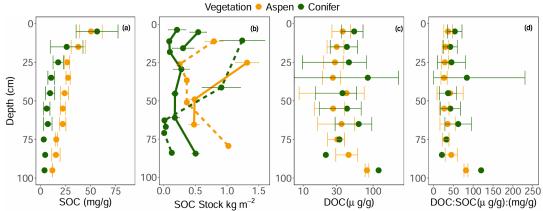


Figure 4: The mean and standard deviation of (a) soil organic carbon (SOC) concentrations, (b) SOC stock [by horizon per pit], (c) dissolved organic carbon (DOC), and (d) the ratio of dissolved organic carbon to soil organic carbon (DOC:SOC) with depth under two different vegetation types, aspen (orange) and spruce (green).

Total soil nitrogen and nitrate concentrations were elevated under the aspen compared to the spruce sites (Fig. 5a & b). Under both vegetation types, soil nitrogen and nitrate declined with depth, with values of total nitrogen reaching as high as 4.63 mg g⁻¹ near the surface and as low as 0.2 mg g⁻¹ at depth, while nitrate concentrations averaged 214 ± 323 mg g⁻¹ near the surface and 2.3 ± 3.8 mg g⁻¹ at depth. The LME models suggest that the vegetation-depth interaction model was most effective at explaining soil nitrogen, and that vegetation type was an influence on soil nitrogen depending on the depth at which the comparison across cover types was made. The LME models also indicate that vegetation exerts a strong control on nitrate concentrations.

The ratio of organic C to N showed no consistent trend with depth in either vegetation type. Instead, aspen soil C:N averaged 10.9 \pm 1.1 and remained fairly constant with depth (Fig. 5c). The spruce sites showed a large range in behavior with depth with a similar mean value of 19.3 in the top 20 cm but widely variable values at the deepest points, ranging from 4.6 to 28.7 (Fig. 5c). The δ^{15} N showed less distinct depth trends compared to the total nitrogen and nitrate, mirroring the lack of depth trends in C:N. Values of δ^{15} N of soil organic matter in spruce plots tended to be lower than that of the aspen(Fig. 5d), suggesting that soil N has undergone more microbial processing (Nadelhoffer and Fry 1988; Billings and Richter 2006) under aspens compared to under conifers. Here the LME models suggested vegetation interacts with depth to exert a meaningful effect on δ^{15} N values.

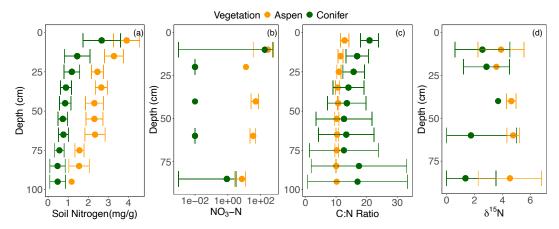


Figure 5: The mean and standard deviation of (a) soil nitrogen, (b) soil nitrate, (c) carbon nitrogen ratio (C:N), and δ^{15} N with depth under two different vegetation types, aspen (orange) and spruce (green). For each mean and standard deviation, where error bars are not visible the deviation is smaller than the point.

4.4 Biotic activity 4.4.1 Roots

The LME models indicate that vegetation-depth interactions were meaningful in driving total and coarse root fractions (p-values <0.001), with generally greater root abundances in the aspen compared to the spruce (Fig. 6a &c). In contrast, vegetation type offered no additional explanatory power to the depth-dependent fine root abundance (Fig. 6b). The difference between aspen and spruce root abundances were continuous with depth for the total root fraction but more punctuated with coarse root fraction. For example, higher coarse root fractions were observed from 30-60 cm and greater than 90 cm for the aspen as compared to the spruce. Interestingly, overall spruce root fractions decreased faster with depth than aspen root fractions. When we compared the DOC to rooting abundance, we found generally greater concentrations of DOC per unit root abundance under spruce soils, particularly with respect to total and fine roots (Fig. 7).

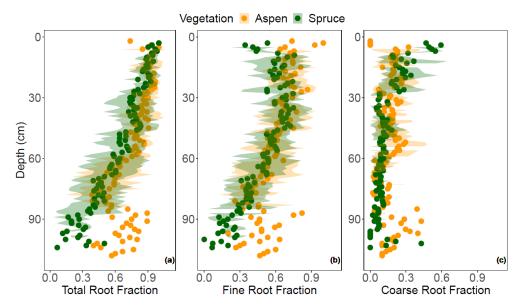


Figure 6: The mean (points) and standard deviation(shading) of (a) total, (b) fine, and (c) coarse root fractions quantified at 1-cm depth interval under two different vegetation types, aspen (orange) and spruce (green).

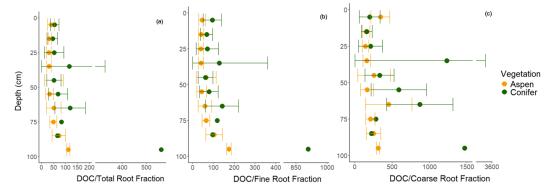


Figure 7: The mean (points) and standard deviation (bars) of DOC divided by mean (a) total, (b) fine, and (c) coarse root fractions every 10 cm under two different vegetation types, aspen (orange) and spruce (green). Root fractions represent the count of fine (<1 mm) or coarse (≥1 mm) in 10 cm depth increments.

4.4.2 Enzyme activity and microbial biomass

Exo-enzyme activity, their ratios, and microbial biomass C decreased from the surface with depth (Fig. 8a.-d.). Exo-enzyme activity standardized by microbial biomass lacked distinct depth trends (data not shown). Beta values of exponential decay curves fit to these

data, merged for each cover type, were larger (more negative) for the spruce sites compared to aspen, indicating steeper declines in exo-enzymatic activities, microbial biomass C, and BGase activity relative to NAGase activity in spruce-dominated forest soils.

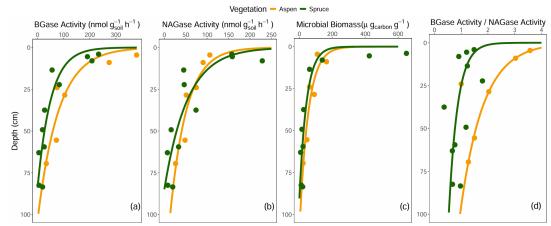


Figure 8: Exponential curves fitting enzyme and microbial biomass data. Panels (a) β -glucosidase (BGase) (b) β -N-acetyl glucosaminidase (NAGase) (c) microbial biomass and (d) the ratio of BGase to NAGase. Each point represents one site and one depth, with each curve thus defined by multiple spruce and aspen sites.

4.4.3 Soil O₂ and CO₂

We examined soil O_2 and CO_2 concentrations during the growing season to better understand patterns of respiration (Fig. 9). Soil CO_2 concentrations increased with depth across all sites, while O_2 concentrations were more variable. Soil O_2 concentrations remained relatively stable at aspen sites and at spruce granite sites (AS, EAG, and SG). However, O_2 concentrations decreased with depth at the remaining two spruce sites—one sandstone and one granite (SS and ESG).

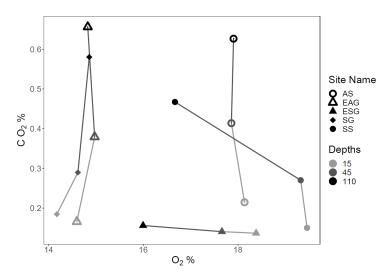


Figure 9: Average and standard error (obscured by symbols) of the soil O_2 (%) and CO_2 (%) concentrations during the growing season at depths 15 cm (light gray), 45 cm (dark gray), and 110 cm (black), with lines connecting depths within each profile. Open shapes are aspen sites, closed shapes are spruce sites, circles are sandstone sites, and other shapes are granite sites. AS, Aspen Sandtone; EAG, Elk Aspen Granite; ESG, Elk Spruce Granite; SG, Spruce Granit; SS, Spruce Sandstone.

4.4 Soil Aggregates

The mean geometric diameter of soil aggregates was generally smaller under aspen compared to spruce (Fig. 10a), and aspen aggregates tended to be finer, with fewer intermediate and coarse aggregates compared to granite (Fig. 10b-d). LME indicated that vegetation-depth were the most meaningful in driving fine, intermediate, and coarse aggregate fractions (p-values <0.001). Of the three aggregate size fractions, the fine aggregate fraction was most characterized by vegetation and depth interactions.

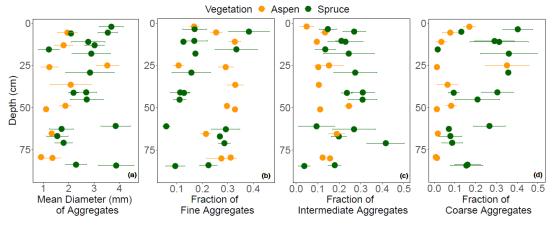


Figure 10: The geometric mean and standard deviation of (a) all aggregates, and fraction of (b) fine aggregates (< 0.21 mm), (c) intermediate aggregates (0.21-4.76 mm), and (d) coarse aggregates (> 4.76 mm). Colors are associated with vegetation, aspen (orange) and spruce (green).

We standardized aggregates by SOC to investigate the propensity of SOC to form large aggregates (Fig. 11; Souza et al. 2023). We observed a higher coarse aggregate:SOC ratio in the spruce sites, suggesting that SOC in spruce-dominated soils exhibits a higher propensity to form coarse and intermediate aggregates (data not show), while the fine aggregate:SOC ratio tended to be higher in the aspen.

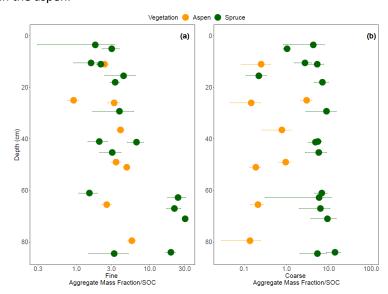


Figure 11: The mean and standard deviation of the fraction of (a) fine aggregates (< 0.21 mm) and (b) coarse aggregates (> 4.76 mm) divided by the fraction of SOC. Colors are associated with vegetation, aspen (orange) and spruce (green).

5 Discussion

Our data indicate that differences in SOC protection give rise to often observed patterns of elevated SOC storage in soils under aspen compared to those in conifer stands (Woldeselassie et al., 2012, Laganiere et al., 2013, Boca et al., 2020, Román Dobarco et al., 2021), and that by integrating knowledge from biology, pedology, hydrology, and soil chemistry we can better understand how factors interact to drive observed SOC patterns in aspen and conifer montane forests. Our study further suggests that aspen-dominated soils may experience enhanced degrees of microbial transformation of SOC, with the products of those transformations exhibiting a greater tendency to reside in relatively small aggregates and thus protect carbon to a greater degree (Fig. 12). Consistent with this idea, we also observed less DOC loss in aspen soils compared to soil under spruce stands and slightly higher concentrations of DOC per unit root abundance under the spruce stands. These differences suggest greater infiltration of DOC

to deeper horizons in spruce soils compared to those in aspen stands. It is important to highlight that spatial replicates controlling for all factors of interest at an ecosystem scale were not feasible, but that our work moves beyond considerations of vegetation biomass characteristics that often dominate investigations of contrasting SOC dynamics. Instead we begin to unravel the complex interactions among cover type characteristics, soil properties, and hydrologic settings (e.g., hillslope position). Below, we discuss the drivers of SOC form and fate in greater detail and interpret these findings in light of recent increases in stream water DOC concentration in this spruce-dominated watershed.

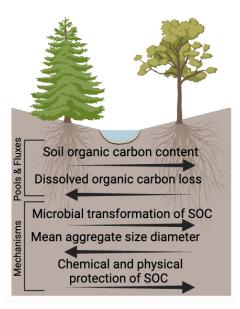


Figure 12. Summary of observations across aspen and spruce sites at Coal Creek, CO (USA) that are interpreted to indicate a greater amount of chemical and physical protection of SOC under aspen sites.

5.1 Microbial data are consistent with the Microbial Efficiency - Matrix Stabilization framework

Our data provide multiple lines of evidence that SOC protection, and thus fate, in these montane forests is largely controlled by biotic action linked to soil mineral material. Here greater values of total N, nitrate, BGase and δ^{15} N and lower C:N under aspen compared to spruce (Fig. 5, 8), suggest a greater degree of microbially processed organic matter under the aspen stands where greater SOC contents were measured (Fig. 4). These data hint that the microbial community under aspen stands functions in a manner consistent with the Microbial Efficiency - Matrix Stabilization (MEMS) framework (Cotrufo et al., 2012), transforming relatively labile leaf litter (e.g., under aspen) into byproducts more readily stabilized within soil profiles to a greater extent than appears to occur with slower-turnover litterfall (e.g., spruce). Differences in litterfall composition and thus decay rates across aspen and conifer species are typical, with generally lower lignin and higher nitrogen content in aspen litter (Boča et al., 2020). Our inference about litterfall differences promoting microbial byproduct stabilization is

595 consistent with findings from across western Canada, where investigators observe relatively 596 more active microbial communities under aspen compared to paired spruce stands throughout a growing season (Norris et al., 2016). Specifically, one interpretation of these C:N, δ^{15} N, exo-597 598 enzyme, SOC, and DOC data at our sites is that tree species-specific composition of litterfall 599 appears to have prompted greater microbial activities (Fig. 8), likely promoting greater 600 contributions of microbial necromass to the SOC pool. This, in turn, may promote greater SOC 601 retention in aspen-dominated soils; though Investigation of specific necromass-derived 602 compounds in these soils (e.g., Liang et al., 2019) is beyond the scope of this work, it represents 603 a valuable way forward to testing this inference.

5.2 SOC transformations likely influence aggregate sizes and the probability of destabilization

The smaller aggregate sizes in aspen-dominated soils further support the notion that SOC stability is enhanced by higher microbial activity and increased necromass production rates. SOC is better protected and has generally longer mean residence times in smaller aggregates than larger aggregates (Six and Jastrow, 2002; Six et al., 2004). Literature hints that the larger size aggregates (Fig. 10c) and greater propensity for C to form large aggregates (Fig. 11b) observed in the spruce-dominated soils at our sites may be promoted by relatively higher concentrations of particulate organic matter (POM) under spruce soils compared to aspen (Cotrufo et al., 2015; Cotrufo et al., 2019). Taken together, these lines of evidence are consistent with aspen-dominated forests harboring SOC pools that tend to promote relatively small aggregate formation that can preserve SOC to a greater extent, particularly deeper in the profile where MAOC tends to dominate SOC pools (Jackson et al. 2017).

615 616 617

618

619

620

621

622

623

624

625

626

627

604

605

606

607

608

609

610

611

612

613

614

We also observed patterns in soil data suggesting that aspen soil SOC pools are more dominated by MAOC than those under spruce. The greater abundances of smaller aggregates and total soil nitrogen and nitrate concentrations, and lower C:N ratios (Fig. 5a-c), in aspen compared to conifer soils are consistent with relatively greater MAOC than POC concentrations (Kögel-Knaper et al., 2008; Ye et al., 2018; Sokal et al., 2022). Combined with the lower DOC:SOC ratio in aspen-dominated soils, these data suggest that a greater fraction of SOC in aspen-dominated soils is mineral-bound and relatively difficult to transform into microbiallyavailable pools of DOC. We interpret these data to suggest that microbially-mediated transformations of SOC promote differences in the abundance of MAOC and the physical structure of soil aggregates that leads to differences in the SOC protection.

5.3 Roots may indirectly regulate depth profiles of EOC losses

628 Roots can influence SOC stability through their promotion of both physical and chemical 629 protection. Specifically, roots can play an important role in the formation and breakdown of soil 630 aggregates (Oades, 1984; Singer et al., 1992; Le Bissonnais 1996; Attou et al., 1998), they can 631 create biopores that can support the transport of DOC to depth (Sigen et al., 1997; Angers and 632 Caron, 1998; Boger et al., 2010; Zhang et al., 2015; Lucas et al., 2019), and root exudates can 633 prime microbial activity, enhance decomposition, and support the formation of MAOC (Jilling et 634 al., 2021; Fossum et al., 2022). Our data revealed little direct correspondence of root 635 abundance with SOC. However, per unit root abundance, spruce soils appear to harbor more 636

DOC compared to aspen. This was particularly evident per unit total and fine roots, and is

646

647

648

649 650

651

652

653

654

655

656

657

658

659

660 661

662

663

664

637 suggestive of greater movement of DOC through spruce soil profiles with potential greater 638 losses of DOC to stream water compared to aspen-dominated soils. A complementary 639 explanation would be that there are differences in the amount of DOC exudation by roots 640 between the two species, and indeed such difference in exudation rates have been 641 hypothesized in the literature (Buck and St. Clair, 2012; Boca et al., 2020). We might expect that 642 greater exudation would lead to a greater increase in the MAOC pool and enhanced C stability 643 (Even and Cotrufo, 2024), which could explain the lower values of DOC relative to SOC observed 644 under aspen.

5.4 Aspect exerts some control on Coal Creek SOC dynamics.

South-facing slopes tend to be warmer and drier than north-facing slopes in the northern hemisphere (Burnett et al., 2008), and thus they can prompt more microbial decomposition of SOC. As such, aspen cover tends to be confounded with warmer soil temperatures; this was the case in our study (Fig. 2). It is possible that the exo-enzymatic signals of generally greater microbial activity in aspen-dominated soils compared to spruce-dominated soils (Fig. 8) is prompted more so by enhanced soil temperatures than by differences in aspen and spruce organic matter characteristics, and that enhanced soil temperatures also contribute to smaller soil aggregates, perhaps also due to greater microbial activities. Consistent with this idea, soil CO₂ and O₂ concentrations generally suggest that microbial activities in the warmer, aspendominated soils are greater than in the cooler, spruce-dominated soils. Cooler, wetter conditions of the spruce-dominated soils, particularly following snow melt may prompt a deeper infiltration of moisture and DOC down profile, leading to the elevated DOC/root biomass observed under the spruce stands. While disentangling the impact of elevated soil temperatures from that of the chemical composition of organic inputs from aspen trees within the soil profile is difficult, soil nitrogen and $\delta^{15}N$ data are consistent with the idea that litterfall chemistry, and not just temperatures, promoted greater microbial activities in the aspendominated soils. We suggest that investigating the comprehensive, integrated effects of warmer, aspen-dominated sites on SOC dynamics compared to cooler, spruce-dominated sites offer a straightforward approach to assessing landscape-scale transitions in watershed carbon dynamics.

665 666 667

668

669

670

671

672

673

674

675

676

677

678

6 Changes in SOC destabilization and release have implications for stream water quality

Widespread increases in stream water DOC concentrations have been reported around the world in recent decades (Evans et al., 2005; Alvarez-Cobelas, 2012; Stanley et al., 2012; Pagano et al., 2014). Increases in stream water DOC concentration can negatively impact global water quality in multiple ways by modifying light and thermal regimes, affecting natural nutrient cycling by absorbing incoming thermal radiation (Morris et al., 1995; Kelly et al., 2001; Larson et al., 2007; Cory et al., 2015), altering the transport and bioavailability of heavy metals (Dupré et al., 1999; Neubauer et al., 2013; Tang and Johannesson, 2003; Pourret et al., 2007; Trostle et al., 2016), and prompting the creation of potentially harmful disinfection byproducts (Leonard et al., 2022). Consistent with these global trends, recent findings at Coal Creek also report increasing DOC concentrations (Leonard et al., 2022; Kerins et al., 2024). As such, our research may help to shed light on drivers of stream water DOC, and thus has implications for changing

680 size distributions may play an underappreciated role in influencing stream water carbon 681 chemistry. Aggregate size can be modulated by vegetation type (i.e., smaller aggregates 682 associated with Aspen) (Fig. 11; Jiménez et al., 2012; Zhao et al., 2017), and aggregation and 683 disaggregation both represent mechanisms that can influence the transport of DOC to streams 684 (Fan et al., 2022). Larger aggregates appear more prone to induce DOC transport into streams 685 due to their relatively greater propensity to undergo fragmentation and associated loss of DOC 686 (Cincotta et al., 2019; Fan et al., 2022). 687 Understanding how these different types of vegetation affect the chemical and physical 688 properties of soil, and how this influences carbon release, is further complicated by climate 689 change. Increasing temperature, a phenomenon evident in many Rocky Mountain 690 environments including Coal Creek (Zhi et al., 2020), can cause aggregates to become less 691 stable (Lavee et al., 1996, Wang et al., 2016), soil microbes to increase their carbon demand 692 (Belay-Tedla et al., 2009, Hu et al., 2017), and recalcitrant carbon to undergo decay more 693 rapidly (Luo et al., 2009). Dry soil conditions, which are often prompted by warming (Lakshmi et 694 al., 2003), can induce a decrease in microbial biomass, which is often incorporated into stable 695 aggregates (Gillballi et al., 2007). In addition to warming induced changes to subsurface 696 properties and function, changing stand composition prompted by warming and drying can 697 alter carbon dynamics. Some research indicates a high mortality rate among aspen stands and 698 the expansion of conifer stands associated with increases in drought (Anderegg et al., 2013, 699 Brewen et al., 2021), while others indicate the expansion of bark beetles and wildfires may 700 promote the encroachment of aspen into conifer stands (Andrus et al., 2021). Our work 701 suggests that the distribution of spruce and aspen in a watershed may influence soil release of 702 DOC and its subsequent transport into streams, given that spruce vegetation appears 703 associated with larger aggregates than aspen (Fig. 10) and the potential for greater DOC loss 704 per unit SOC (Fig., 4c). Thus, shifts in stand composition associated with perturbations linked to 705 large-scale global changes have the potential to influence DOC transport from the hillslope to 706 the stream.

drinking water quality in the region. Specifically, our work hints that differences in aggregate-

707

708

709

710

711

712

713

714

715

716

717

7 Conclusions

Our work explores the interplay of different forest cover types and abiotic conditions in governing soil microbial activities, which then influence the propensity of SOC pools to form and stabilize soil aggregates of different sizes. In turn, these processes appear to promote varying capacities of a soil to protect SOC from destabilization. Our work contributes to the ongoing process of examining suites of biotic and abiotic whole-ecosystem (i.e., the critical zone, Richter and Billings, 2015) features to understand SOC dynamics (e.g., Keller, 2019; Mainka et al., 2022; Wasner et al., 2024) and offers a springboard for subsequent studies in which a greater number of spatially replicated sites across all gradients of interest may be feasible. Specifically, our data suggest that aspen-derived organic matter is linked to greater

https://doi.org/10.5194/egusphere-2025-70 Preprint. Discussion started: 7 February 2025 © Author(s) 2025. CC BY 4.0 License.

737

718 transformation rates by soil microbes and greater stabilization of SOC stocks, prompting a 719 lower probability of relatively labile pools of SOC undergoing transport down-profile. If so, this 720 suggests that aspen-dominated stands may experience a lower probability of promoting DOC 721 transport across landscapes into streams. This phenomenon may be driven by greater rates of 722 microbial necromass formation and generation of relatively smaller aggregates, and highlights 723 how models like MEMS (Cotrufo et al., 2013) have import for projecting not just CO2 release to 724 the atmosphere and SOC stabilization, but down-profile and downstream carbon transport as 725 well. Though soil temperature differences likely played a role in the greater soil microbial 726 activities in aspen, the generally higher nitrogen in aspen soils lends credence to the idea that 727 litterfall chemistry itself played a key role in the higher rates of soil microbial activities. As such, 728 the patterns that emerge in our data suggest that processes that control landcover ultimately 729 also control SOC dynamics and soil structure in ways that may directly impact the delivery of 730 organic C pools deep within soil profiles and stream water quality, and be sensitive to changing 731 climatic conditions. Here, we demonstrate how the critical zone paradigm offers a valuable 732 approach for examining, interrogating, and understanding watersheds, linking vegetation 733 dynamics to subsurface processes and ultimately to the flux of water and carbon from hillslopes 734 to streams. 735 Data statement 736 Soil sensor and soil properties data can be obtained at HydroShare,

http://www.hydroshare.org/resource/9948ad04a9a74246ad9bd5f8decb40b9

25

Author Contributions (CRediT):

738

739 740

741	Visualization Writing – original draft, Writing – review and editing
742	Billings, S.: Conceptualization, Funding acquisition, Investigation, Methodology, Writing –
743	original draft, Writing – review and editing
744	Li, L.: Conceptualization, Investigation, Funding acquisition, Writing – review and editing
745	Hirmas, D.R.: Data Curation, Funding acquisition, Methodology, Investigation, Writing – review
746	and editing
747	Johnson, K.: Data Curation, Investigation, Writing – review and editing
748	Kerins, D. : Investigation, Writing – review and editing
749	Pachon, J: Data Curation, Investigation, Writing – review and editing
750	Curtis Beutler: Investigation, Writing – review and editing
751	Jarecke, K.M.: Data Curation, Investigation, Writing – review and editing
752	Varikuti, V: Data Curation, Investigation, Writing – review and editing
753	Unruh, Micah,: Writing – review and editing
754 755	Ajami, H: Data Curation, Investigation, Funding acquisition, Methodology, Writing – review and editing
756	Barnard, H.R.: Investigation, Funding acquisition, Writing – review and editing
757	Flores, A.N: Funding acquisition, Writing – review and editing
758	Williams, K. H.: Funding acquisition, Investigation, Writing – review and editing
759	Sullivan, P.L.: Conceptualization, Funding acquisition, Methodology, Project administration,
760	Supervision, Visualization, Writing – original draft, Writing – review and editing
761	
762	Competing Interests
763	The authors declare that they have no conflict of interest
764	,
764	
765	Acknowledgements
766	We would like to thank Reece Gregory, Nicole Hornslein, Ariel Mollhagen, and Michael
767	Mackenzie. This material is based upon work supported by the National Science Foundation
768	under Grants NSF 2121694 (P. L. Sullivan) and 2012796 (P. L. Sullivan); NSF 2012669 (H. R.
769	Barnard), the Department of Energy under Grant DE-SC0020146 (L. Li; P. L. Sullivan), NSF
770	2121639 (S.A. Billings), and NSF 2121760 (H. Ajami; D. Hirmas). This material is partially based
771	upon work supported as part of the Watershed Function Scientific Focus Area funded by the
772	U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research
773	under Contract No. DE-AC02-05CH11231

Wang, L: Conceptualization, Data curation, Formal analysis, Investigation, Methodology,

775 References
776 Alaghmand, S., Beecham, S
777 groundwater flows and solo

Alaghmand, S., Beecham, S. and Hassanli, A., 2014. Impacts of vegetation cover on surfacegroundwater flows and solute interactions in a semi-arid saline floodplain: a case study of the

778 Lower Murray River, Australia. *Environmental Processes*, 1, pp.59-71.

779 https://doi.org/10.1007/s40710-014-0003-0

Alban, D.H., 1982. Effects of nutrient accumulation by aspen, spruce, and pine on soil

781 properties. Soil Science Society of America Journal, 46(4), pp.853-861

782 https://doi.org/10.2136/sssaj1982.03615995004600040037x

783 Alexander, R.R., 1987. Ecology, silviculture, and management of the Engelmann spruce--

784 subalpine fir type in the central and southern Rocky Mountains (No. 659). US Department of

785 Agriculture, Forest Service.

786 Allison, S.D., 2014. Modeling adaptation of carbon use efficiency in microbial communities.

787 Frontiers in Microbiology, 5, p.571. https://doi.org/10.3389/fmicb.2014.00571.

788 Alvarez-Cobelas, M., Angeler, D. G., Sánchez-Carrillo, S., Almendros, G., 2012. A worldwide view

of organic carbon export from catchments. Biogeochemistry, 107, 275-293.

790 https://doi.org/10.1007/s10533-010-9553-z

791 Amézketa, E., 1999. Soil aggregate stability: a review. Journal of sustainable agriculture, 14(2-3),

792 pp.83-151.<u>https://doi.org/10.1300/J064v14n02_08</u>.

Anderegg, L.D., Anderegg, W.R., Abatzoglou, J., Hausladen, A.M. and Berry, J.A., 2013. Drought

794 characteristics' role in widespread aspen forest mortality across Colorado, USA. Global Change

795 *Biology*, 19(5), pp.1526-1537.https://doi.org/10.1111/gcb.12146.

796 Anderson, M.A., Graham, R.C., Alyanakian, G.J. and Martynn, D.Z., 1995. Late summer water

797 status of soils and weathered bedrock in a giant sequoia grove. Soil Science, 160(6), pp.415-

798 422.https://doi.org/10.1097/00010694-199512000-00007.

799 Anderson, S.P., Hinckley, E.L., Kelly, P. and Langston, A., 2014. Variation in critical zone

800 processes and architecture across slope aspects. Procedia Earth and Planetary Science, 10,

801 pp.28-33. https://doi.org/10.1016/j.proeps.2014.08.006

Andrus, R.A., Hart, S.J., Tutland, N. and Veblen, T.T., 2021. Future dominance by quaking aspen

803 expected following short-interval, compounded disturbance interaction. Ecosphere, 12(1),

804 p.e03345.https://doi.org/10.1002/ecs2.3345.

805 Angers, D.A. and Caron, J., 1998. Plant-induced changes in soil structure: processes and

806 feedbacks. Biogeochemistry, 42, pp.55-72. https://doi.org/10.1023/A:1005944025343

807 Araya, S.N. and Ghezzehei, T.A., 2019. Using machine learning for prediction of saturated

808 hydraulic conductivity and its sensitivity to soil structural perturbations. Water Resources

809 Research, 55(7), pp.5715-5737. https://doi.org/10.1029/2018WR024357

- Attou, F., Bruand, A. and Le Bissonnais, Y., 1998. Effect of clay content and silt—clay fabric on
- stability of artificial aggregates. European Journal of Soil Science, 49(4), pp.569-577.
- 812 https://doi.org/10.1046/j.1365-2389.1998.4940569.x
- Averill, C., Turner, B.L. and Finzi, A.C., 2014. Mycorrhiza-mediated competition between plants
- and decomposers drives soil carbon storage. *Nature*, 505(7484), pp.543-545.
- 815 https://doi.org/10.1038/nature12901
- 816 Banwart, S., Bernasconi, S.M., Bloem, J., Blum, W., Brandao, M., Brantley, S., Chabaux, F., Duffy,
- 817 C., Kram, P., Lair, G. and Lundin, L., 2011. Soil processes and functions in critical zone
- 818 observatories: hypotheses and experimental design. Vadose Zone Journal, 10(3), pp.974-987.
- 819 https://doi.org/10.2136/vzj2010.0136
- Belay-Tedla, A., Zhou, X., Su, B., Wan, S. and Luo, Y., 2009. Labile, recalcitrant, and microbial
- 821 carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to
- 822 experimental warming and clipping. Soil Biology and Biochemistry, 41(1), pp.110-116.
- 823 <u>https://doi.org/10.1016/j.soilbio.2008.10.003</u>
- Bergstrom, A., Jencso, K. and McGlynn, B., 2016. Spatiotemporal processes that contribute to
- 825 hydrologic exchange between hillslopes, valley bottoms, and streams. Water Resources
- 826 Research, 52(6), pp.4628-4645.https://doi.org/10.1002/2015WR017972
- 827 Berner, R.A., 1992. Weathering, plants, and the long-term carbon cycle. Geochimica et
- 828 Cosmochimica Acta, 56(8), pp.3225-3231. https://doi.org/10.1016/0016-7037(92)90300-8
- Besnard, E., Chenu, C., Balesdent, J., Puget, P. and Arrouays, D., 1996. Fate of particulate
- 830 organic matter in soil aggregates during cultivation. European Journal of Soil Science, 47(4),
- 831 pp.495-503. https://doi.org/10.1111/j.1365-2389.1996.tb01849.x
- 832 Billings, S.A., and Richter, D.D., 2006. Changes in stable isotopic signatures of soil nitrogen and
- carbon during forty years of forest development. Oecologia 148: 325–333; 10.1007/s00442-
- 834 006-0366-7. https://doi.org/10.1007/s00442-006-0366-7
- 835 Billings, S.A., Hirmas, D., Sullivan, P.L., Lehmeier, C.A., Bagchi, S., Min, K., Brecheisen, Z., Hauser,
- 836 E., Stair, R., Flournoy, R. and deB. Richter, D., 2018. Loss of deep roots limits biogenic agents of
- 837 soil development that are only partially restored by decades of forest regeneration. Elem Sci
- 838 Anth, 6, p.34.https://doi.org/10.1525/elementa.287.
- 839 Billings, S.A., Lajtha, K., Malhotra, A., Berhe, A.A., de Graaff, M.-A., Earl, S., Fraterrigo, J.,
- 840 Georgiou, K., Grandy, S., Hobbie, S.E., Moore, J.A.M., Nadelhoffer, K., Pierson, D., Rasmussen,
- 841 C., Silver, W.L., Sulman, B.N., Weintraub, S., and Wieder, W., 2021. Soil organic carbon is not
- 842 just for soil scientists: Measurement recommendations for diverse practitioners. Ecological
- 843 *Applications* 31 doi: 10.1002/eap.2290
- 844 Boča, A., Jacobson, A.R. and Van Miegroet, H., 2020. Aspen soils retain more dissolved organic
- 845 carbon than conifer soils in a sorption experiment. Frontiers in Forests and Global Change, 3,
- 846 p.594473. https://doi.org/10.3389/ffgc.2020.594473.

- 847 Bogner, C., Gaul, D., Kolb, A., Schmiedinger, I. and Huwe, B., 2010. Investigating flow
- mechanisms in a forest soil by mixed-effects modelling. European Journal of Soil Science, 61(6),
- 849 pp.1079-1090. https://doi.org/10.1111/j.1365-2389.2010.01300.x
- 850 Bornyasz, M.A., Graham, R.C. and Allen, M.F., 2005. Ectomycorrhizae in a soil-weathered
- 851 granitic bedrock regolith: linking matrix resources to plants. *Geoderma*, 126(1-2), pp.141-160.
- 852 https://doi.org/10.1016/j.geoderma.2004.11.023
- 853 Brewen, C.J., Berrill, J.P., Ritchie, M.W., Boston, K., Dagley, C.M., Jones, B., Coppoletta, M. and
- 854 Burnett, C.L., 2021. 76-year decline and recovery of aspen mediated by contrasting fire regimes:
- 855 Long-unburned, infrequent and frequent mixed-severity wildfire. Plos one, 16(2),
- 856 p.e0232995. https://doi.org/10.1371/journal.pone.0232995.
- 857 Brzostek, E.R., Greco, A., Drake, J.E. and Finzi, A.C., 2013. Root carbon inputs to the rhizosphere
- 858 stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest
- 859 soils. Biogeochemistry, 115, pp.65-76. https://doi.org/10.1007/s10533-012-9818-9
- 860 Bronick, C.J. and Lal, R., 2005. Soil structure and management: a review. Geoderma, 124(1-2),
- 861 pp.3-22. https://doi.org/10.1016/j.geoderma.2004.03.005
- 862 Brusseau, M.L. and Rao, P.S.C., 1990. Modeling solute transport in structured soils: A
- 863 review. *Geoderma*, 46(1-3), pp.169-192. https://doi.org/10.1016/0016-7061(90)90014-Z
- 864 Buck, J.R. and St. Clair, S.B., 2012. Aspen increase soil moisture, nutrients, organic matter and
- respiration in Rocky Mountain forest communities. PLoS One, 7(12),
- 866 p.e52369.https://doi.org/10.1371/journal.pone.0052369.
- 867 Buckeridge, K.M., Creamer, C. and Whitaker, J., 2022. Deconstructing the microbial necromass
- 868 continuum to inform soil carbon sequestration. Functional Ecology, 36(6), pp.1396-1410.
- 869 https://doi.org/10.1111/1365-2435.14014
- 870 Burnett, B.N., Meyer, G.A. and McFadden, L.D., 2008. 'Aspect-related microclimatic influences
- 871 on slope forms and processes, northeastern Arizona', Journal of Geophysical Research, 113(F3),
- p. F03002. Available at: https://doi.org/10.1029/2007JF000789.
- 873 Brzostek, E.R., Greco, A., Drake, J.E. and Finzi, A.C., 2013. Root carbon inputs to the rhizosphere
- 874 stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest
- soils. Biogeochemistry, 115, pp.65-76. https://doi.org/10.1007/s10533-012-9818-9
- 876 Canelles, Q., Aquilué, N., James, P. M., Lawler, J., & Brotons, L. (2021). Global review on
- 877 interactions between insect pests and other forest disturbances. Landscape Ecology, 36, 945-
- 878 972. https://doi.org/10.1007/s10980-021-01209-7
- 879 Carbone, M.S., Still, C.J., Ambrose, A.R., Dawson, T.E., Williams, A.P., Boot, C.M., Schaeffer, S.M.
- and Schimel, J.P., 2011. Seasonal and episodic moisture controls on plant and microbial
- 881 contributions to soil respiration. *Oecologia*, 167, pp.265-278. https://doi.org/10.1007/s00442-
- 882 011-1975-3

919

883 Chen, S., Franklin, R.E. and Johnson, A.D., 1997. Clay film effects on ion transport in soil. Soil 884 science, 162(2), pp.91-96. 885 Chorover, J., Kretzschmar, R., Garcia-Pichel, F., and Sparks, D. L, 2007. Soil biogeochemical 886 processes within the critical zone. *Elements*, 3(5), 321-326. 887 https://doi.org/10.2113/gselements.3.5.321 888 Cincotta, M. M., Perdrial, J.N., Shavitz, A., Libenson, A., Landsman-Gerjoi, M., Perdrial, N., 889 Armfield, J., Adler, T., and Shanley, J.B., 2019. Soil aggregates as a source of dissolved organic 890 carbon to streams: an experimental study on the effect of solution chemistry on water 891 extractable carbon." Frontiers in Environmental Science: 172. 892 https://doi.org/10.3389/fenvs.2019.00172. 893 Clark, A.L. and Clair, S.B.S., 2011. Mycorrhizas and secondary succession in aspen-conifer 894 forests: Light limitation differentially affects a dominant early and late successional species. 895 Forest Ecology and Management, 262(2), pp.203 896 207. https://doi.org/10.1016/j.foreco.2011.03.024. 897 Coop, J.D., Barker, K.J., Knight, A.D. and Pecharich, J.S., 2014. Aspen (Populus tremuloides) 898 stand dynamics and understory plant community changes over 46 years near Crested Butte, 899 Colorado, USA. Forest Ecology and Management, 318, pp.1 900 12.https://doi.org/10.1016/j.foreco.2014.01.019. 901 Cory, R. M., Harrold, K. H., Neilson, B. T., and Kling, G. W., 2015. Controls on dissolved organic 902 matter (DOM) degradation in a headwater stream: the influence of photochemical and 903 hydrological conditions in determining light-limitation or substrate-limitation of photo-904 degradation. Biogeosciences, 12(22), 6669-6685. https://doi.org/10.5194/bg-12-6669-2015 905 Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K. and Paul, E., 2013. The Microbial 906 Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with 907 soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Global 908 change biology, 19(4), pp.988-995. https://doi.org/10.1111/gcb.12113 909 910 Cotrufo, M.F., Soong, J.L., Horton, A.J., Campbell, E.E., Haddix, M.L., Wall, D.H. and Parton, W.J., 911 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass 912 loss. Nature Geoscience, 8(10), pp.776-779.https://doi.org/10.1038/ngeo2520. 913 Cotrufo, M.F., Ranalli, M.G., Haddix, M.L., Six, J. and Lugato, E., 2019. Soil carbon storage 914 informed by particulate and mineral-associated organic matter. Nature Geoscience, 12(12), 915 pp.989-994.https://doi.org/10.1038/s41561-019-0484-6. 916 917 Cruz-Paredes, C., Tájmel, D. and Rousk, J., 2021. Can moisture affect temperature dependences

of microbial growth and respiration?. Soil Biology and Biochemistry, 156, p.108223.

https://doi.org/10.1016/j.soilbio.2021.108223

952

953

954

955

956

921 pp.223-226. 922 Culman, S., 2019. Calculating Cation Exchange Capacity, Base Saturation, and Calcium 923 Saturation. Ohioline, 22 Aug., ohioline.osu.edu/factsheet/anr-81. 924 Dapples, E.C., 1947. Sandstone types and their associated depositional environments. Journal of 925 Sedimentary Research, 17(3), pp.91-100. https://doi.org/10.1306/D42692BA-2B26-11D7-926 8648000102C1865D 927 928 DeForest, J.L., 2009. The influence of time, storage temperature, and substrate age on potential 929 soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biology 930 and Biochemistry, 41(6), pp.1180-1186. https://doi.org/10.1016/j.soilbio.2009.02.029Get rights 931 and content 932 de Wit, H.A., Bryn, A., Hofgaard, A., Karstensen, J., Kvalevåg, M.M. and Peters, G.P., 2014. 933 Climate warming feedback from mountain birch forest expansion: reduced albedo dominates 934 carbon uptake. Global Change Biology, 20(7), pp.2344-2355. 935 https://doi.org/10.1111/gcb.12483 936 Dickson, E.L., Rasiah, V. and Groenevelt, P.H., 1991. Comparison of four prewetting techniques 937 in wet aggregate stability determination. Canadian journal of soil science, 71(1), pp.67-72. 938 https://doi.org/10.4141/cjss91-006 939 Dohnalkova, A.C., Tfaily, M.M., Chu, R.K., Smith, A.P., Brislawn, C.J., Varga, T., Crump, A.R., 940 Kovarik, L., Thomashow, L.S., Harsh, J.B. and Keller, C.K., 2022. Effects of Microbial-Mineral 941 Interactions on Organic Carbon Stabilization in a Ponderosa Pine Root Zone: A Micro-Scale 942 Approach. Frontiers in Earth Science, 10, p.799694. https://doi.org/10.3389/feart.2022.799694 943 Dupré, B., Viers, J., Dandurand, J. L., Polve, M., Bénézeth, P., Vervier, P., & Braun, J. J. (1999). 944 Major and trace elements associated with colloids in organic-rich river waters: ultrafiltration of 945 natural and spiked solutions. Chemical Geology, 160(1-2), 63-80. 946 https://doi.org/10.1016/S0009-2541(99)00060-1 947 Eusterhues, K., Rumpel, C. and Kögel-Knabner, I., 2005. Organo-mineral associations in sandy 948 acid forest soils: Importance of specific surface area, iron oxides and micropores. European 949 Journal of Soil Science, 56(6), pp.753-763. https://doi.org/10.1111/j.1365-2389.2005.00710.x 950 Evans, C. D., Monteith, D. T., and Cooper, D. M., 2005. Long-term increases in surface water 951 dissolved organic carbon: observations, possible causes and environmental

impacts. Environmental pollution, 137(1), 55-71. https://doi.org/10.1016/j.envpol.2004.12.031

Even, R. J., & Cotrufo, M. F., 2024. The ability of soils to aggregate, more than the state of

aggregation, promotes protected soil organic matter formation. Geoderma, 442, 116760.

Fang, C. and Moncrieff, J.B., 2001. The dependence of soil CO2 efflux on temperature. Soil

Biology and Biochemistry, 33(2), pp.155-165. https://doi.org/10.1016/S0038-0717(00)00125-5

Cryer, D.H. and Murray, J.E., 1992. Aspen regeneration and soils. Rangelands Archives, 14(4),

- 957 Fossum, C., Estera-Molina, K.Y., Yuan, M., Herman, D.J., Chu-Jacoby, I., Nico, P.S., Morrison,
- 958 K.D., Pett-Ridge, J. and Firestone, M.K., 2022. Belowground allocation and dynamics of recently
- 959 fixed plant carbon in a California annual grassland. Soil Biology and Biochemistry, 165,
- 960 p.108519. https://doi.org/10.1016/j.soilbio.2021.108519
- 961 Geological Survey (US) and Gaskill, D.L., 1991. Geologic map of the gothic quadrangle, Gunnison
- 962 *County, Colorado*. The Survey. https://doi.org/10.3133/gq1689.
- 963 German, D.P., Weintraub, M.N., Grandy, A.S., Lauber, C.L., Rinkes, Z.L. and Allison, S.D., 2011.
- 964 Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology
- 965 and Biochemistry, 43(7), pp.1387-1397. https://doi.org/10.1016/j.soilbio.2011.03.017
- 966 Ghotsa Mekontchou, C., Houle, D., Bergeron, Y., Roy, M., Gardes, M., Séguin, A. and Drobyshev,
- 967 I., 2022. Contrasting structure of root mycorrhizal communities of black spruce and trembling
- 968 aspen in different layers of the soil profile in the boreal mixedwoods of eastern Canada. Plant
- and Soil, 479(1-2), pp.85-105. https://doi.org/10.1007/s11104-022-05410-8
- 970 Gillabel, J., Denef, K., Brenner, J., Merckx, R. and Paustian, K., 2007. Carbon sequestration and
- 971 soil aggregation in center-pivot irrigated and dryland cultivated farming systems. Soil Science
- 972 Society of America Journal, 71(3), pp.1020-1028. https://doi.org/10.2136/sssaj2006.0215
- 973 Gislason, S.R., Oelkers, E.H., Eiriksdottir, E.S., Kardjilov, M.I., Gisladottir, G., Sigfusson, B.,
- 974 Snorrason, A., Elefsen, S., Hardardottir, J., Torssander, P. and Oskarsson, N., 2009. Direct
- 975 evidence of the feedback between climate and weathering. Earth and Planetary Science
- 976 Letters, 277(1-2), pp.213-222. https://doi.org/10.1016/j.epsl.2008.10.018
- 977 Godsey, S.E., Kirchner, J.W. and Tague, C.L., 2014. Effects of changes in winter snowpacks on
- 978 summer low flows: case studies in the Sierra Nevada, California, USA. *Hydrological Processes*,
- 979 *28*(19), pp.5048-5064.https://doi.org/10.1038/s41612-018-0012-1.
- 980 Graham, R., Rossi, A. and Hubbert, R., 2010. Rock to regolith conversion: Producing hospitable
- 981 substrates for terrestrial ecosystems. GSA today, 20, pp.4-9.
- 982 Hemingway, J.D., Rothman, D.H., Grant, K.E. et al., 2019. Mineral protection regulates long-
- 983 term global preservation of natural organic carbon. *Nature* 570, 228–231.
- 984 https://doi.org/10.1038/s41586-019-1280-6
- 985 Hodge, A., Berta, G., Doussan, C., Merchan, F. and Crespi, M., 2009. Plant root growth,
- 986 architecture and function. https://doi.org/10.1007/s11104-009-9929-9
- 987 Hodges, C., Kim, H., Brantley, S.L. and Kaye, J., 2019. Soil CO2 and O2 concentrations illuminate
- 988 the relative importance of weathering and respiration to seasonal soil gas fluctuations. Soil
- 989 Science Society of America Journal, 83(4), pp.1167-
- 990 1180.https://doi.org/10.2136/sssaj2019.02.0049.
- 991 Hoff, C.C., 1957. A comparison of soil, climate, and biota of conifer and aspen communities in
- 992 the central Rocky Mountains. The American Midland Naturalist, 58(1), pp.115-
- 993 140.https://doi.org/10.2307/2422365

- Homer, C. H., Fry, J. A., and Barnes, C. A., 2012. The National land cover database, US geological
- 995 survey fact sheet 2012–3020. US Geological Survey: Reston, VA, USA.
- 996 Hu, Y., Wang, Z., Wang, Q., Wang, S., Zhang, Z., Zhang, Z. and Zhao, Y., 2017. Climate change
- 997 affects soil labile organic carbon fractions in a Tibetan alpine meadow. Journal of Soils and
- 998 Sediments, 17, pp.326-339. https://doi.org/10.1007/s11368-016-1565-4
- 999 Hubbard, Susan S., Kenneth Hurst Williams, Deb Agarwal, Jillian Banfield, Harry Beller, Nicholas
- 1000 Bouskill, Eoin Brodie et al., 2019. The East River, Colorado, Watershed: A mountainous
- 1001 community testbed for improving predictive understanding of multiscale hydrological-
- biogeochemical dynamics. *Vadose Zone Journal* 17, no. 1: 1-25.
- 1003 https://doi.org/10.2136/vzj2018.03.0061.
- Jackson, R. B., K. Lajtha, S. E. Crow, G. Hugelius, M. G. Kramer, and G. Pineiro. 2017. The ecology
- 1005 of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology,
- 1006 Evolution, and Systematics 48:419–445. https://doi.org/10.1146/annurev-ecolsys-112414-
- 1007 054234
- 1008 Jastrow, J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral-
- associated organic matter. Soil Biology and Biochemistry 28:665-676.
- 1010 https://doi.org/10.1016/0038-0717(95)00159-X
- 1011 Jastrow, J.D., Miller, R.M. and Boutton, T.W., 1996. Carbon dynamics of aggregate-associated
- 1012 organic matter estimated by carbon-13 natural abundance. Soil Science Society of America
- 1013 *Journal*, 60(3), pp.801-807. https://doi.org/10.2136/sssaj1996.03615995006000030017x
- 1014 Jencso, K.G., McGlynn, B.L., Gooseff, M.N., Bencala, K.E. and Wondzell, S.M., 2010. Hillslope
- 1015 hydrologic connectivity controls riparian groundwater turnover: Implications of catchment
- 1016 structure for riparian buffering and stream water sources. Water Resources Research, 46(10).
- 1017 https://doi.org/10.1029/2009WR008818
- 1018 Jiang, P., Shuai, P., Sun, A., Mudunuru, M. K., and Chen, X., 2023. Knowledge-informed deep
- 1019 learning for hydrological model calibration: an application to Coal Creek Watershed in
- 1020 Colorado. Hydrology and Earth System Sciences, 27(14), 2621-2644.
- 1021 https://doi.org/10.5194/hess-27-2621-2023
- 1022 Jilling, A., Keiluweit, M., Gutknecht, J.L. and Grandy, A.S., 2021. Priming mechanisms providing
- 1023 plants and microbes access to mineral-associated organic matter. Soil Biology and Biochemistry,
- 1024 158, p.108265. https://doi.org/10.1016/j.soilbio.2021.108265
- Jin, L., Andrews, D. M., Holmes, G. H., Lin, H., and Brantley, S. L., 2011. Opening the "black box":
- 1026 Water chemistry reveals hydrological controls on weathering in the Susquehanna Shale Hills
- 1027 Critical Zone Observatory. *Vadose Zone Journal*, 10(3), 928–942.
- 1028 https://doi.org/10.2136/vzj2010.0133
- Johnson, K., Harpold, A., Carroll, R. W., Barnard, H., Raleigh, M. S., Segura, C., ... and Sullivan, P.
- 1030 L., 2023. Leveraging Groundwater Dynamics to Improve Predictions of Summer Low-Flow
- 1031 Discharges. Water Resources Research, 59(8), e2023WR035126.

1032 https://doi.org/10.1029/2023WR035126 1033 Keller, C.K., 2019. Carbon exports from terrestrial ecosystems: A Critical-Zone framework. 1034 Ecosystems 22:1691-1705. https://doi.org/10.1007/s10021-019-00375-9 1035 Kelly, D. J., Clare, J. J., and Bothwell, M. L., 2001. Attenuation of solar ultraviolet radiation by 1036 dissolved organic matter alters benthic colonization patterns in streams. Journal of the North 1037 American Benthological Society, 20(1), 96-108. https://doi.org/10.2307/1468191 1038 Kerins, D., and Li, L., 2023. High dissolved carbon concentration in arid rocky mountain streams. 1039 Environmental Science & Technology, 57(11), 4656-4667. 1040 https://doi.org/10.1021/acs.est.2c06675 1041 Kerins, D., Sadayappan, K., Zhi, W., Sullivan, P. L., Williams, K. H., Carroll, R. W., Barnard H., 1042 Sprenger M., Wenming D., Williams K., Pedrial J., and Li, L., 2024. Hydrology outweighs 1043 temperature in driving production and export of dissolved carbon in a snowy mountain 1044 catchment. Water Resources Research, 60(7), e2023WR036077. 1045 https://doi.org/10.1029/2023WR036077 1046 Kerins D., Sullivan, P.L., Kayalvizhi S., Wei, Z., Rosemary C., Barnard H., Sprenger M., Wenming 1047 D., Williams K., Pedrial J., Li L., in review. Dry Conditions Decrease Carbon Production and 1048 Export but Amplify the Importance of Deep Carbon Respiration in a Water-Limited Mountain 1049 Catchment. 1050 Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R. and Nico, P.S., 2015. Mineral-1051 organic associations: formation, properties, and relevance in soil environments. Advances in 1052 agronomy, 130, pp.1-140.https://doi.org/10.1016/bs.agron.2014.10.005. 1053 Kleber, M., Sollins, P. and Sutton, R., 2007. A conceptual model of organo-mineral interactions 1054 in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. 1055 Biogeochemistry, 85, pp.9-24. https://doi.org/10.1007/s10533-007-9103-5 1056 Kochenderfer, J.N., 1973. Root distribution under some forest types native to West Virginia. 1057 Ecology, 54(2), pp.445-448. https://doi.org/10.2307/1934355 1058 Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, 1059 K. and Leinweber, P., 2008. Organo-mineral associations in temperate soils: Integrating biology, 1060 mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171(1), 1061 pp.61-82. https://doi.org/10.1002/jpln.200700048 1062 Laegdsmand, M., Villholth, K.G., Ullum, M. and Jensen, K.H., 1999. Processes of colloid 1063 mobilization and transport in macroporous soil monoliths. Geoderma, 93(1-2), pp.33-1064 59.https://doi.org/10.1016/S0016-7061(99)00041-5 1065 Laganiere, J., Paré, D., Bergeron, Y., Chen, H.Y., Brassard, B.W. and Cavard, X., 2013. Stability of 1066 soil carbon stocks varies with forest composition in the Canadian boreal biome. Ecosystems, 16, 1067 pp.852-865.https://doi.org/10.1007/s10021-013-9658-z.

- Laganière, J., Boča, A., Van Miegroet, H. and Paré, D., 2017. A tree species effect on soil that is
- 1069 consistent across the species' range: the case of aspen and soil carbon in North America.
- 1070 Forests, 8(4), p.113.https://doi.org/10.3390/f8040113.
- 1071 Lakshmi, V., Jackson, T.J. and Zehrfuhs, D., 2003. Soil moisture-temperature relationships:
- results from two field experiments. *Hydrological processes*, 17(15), pp.3041-3057.
- 1073 <u>https://doi.org/10.1002/hyp.1275</u>
- 1074 Lal, R., 2004. Mechanisms of Carbon Sequestration in Soil Aggregates AU-Blanco-Canqui,
- 1075 Humberto. Crit. Rev. Plant Sci, 23(6), pp.481-504. https://doi.org/10.1080/07352680490886842
- 1076 Langston, A.L. et al. (2015) 'Evidence for climatic and hillslope-aspect controls on vadose zone
- 1077 hydrology and implications for saprolite weathering: CLIMATIC CONTROL ON VADOSE ZONE
- 1078 MOISTURE', Earth Surface Processes and Landforms, 40(9), pp. 1254–1269. Available at:
- 1079 https://doi.org/10.1002/esp.3718.
- 1080 Larson, J. H., Frost, P. C., Lodge, D. M., & Lamberti, G. A. (2007). Photodegradation of dissolved
- 1081 organic matter in forested streams of the northern Great Lakes region. Journal of the North
- 1082 American Benthological Society, 26(3), 416-425.
- Lavelle, P., Spain, A., Fonte, S., Bedano, J. C., Blanchart, E., Galindo, V., ... and Zangerlé, A., 2020.
- 1084 Soil aggregation, ecosystem engineers and the C cycle. Acta Oecologica, 105, 103561.
- 1085 https://doi.org/10.1016/j.actao.2020.103561
- 1086 Leonard, Laura T., Gary F. Vanzin, Vanessa A. Garayburu-Caruso, Stephanie S. Lau, Curtis A.
- 1087 Beutler, Alexander W. Newman, William A. Mitch, James C. Stegen, Kenneth H. Williams, and
- 1088 Jonathan O. Sharp. Disinfection byproducts formed during drinking water treatment reveal an
- 1089 export control point for dissolved organic matter in a subalpine headwater stream." Water
- 1090 Research X 15 (2022): 100144.https://doi.org/10.1016/j.wroa.2022.100144.
- Leonard, L. T., Vanzin, G. F., Garayburu-Caruso, V. A., Lau, S. S., Beutler, C. A., Newman, A. W.,
- 1092 ... & Sharp, J. O. (2022). Disinfection byproducts formed during drinking water treatment reveal
- an export control point for dissolved organic matter in a subalpine headwater stream. Water
- 1094 Research X, 15, 100144. https://doi.org/10.1016/j.wroa.2022.100144
- 1095 Liang, C., Amelung, W., Lehmann, J. and Kästner, M., 2019. Quantitative assessment of
- 1096 microbial necromass contribution to soil organic matter. Global change biology, 25(11),
- 1097 pp.3578-3590. https://doi.org/10.1111/gcb.14781
- 1098 Liu, X. and Biondi, F., 2021. Inter-specific transpiration differences between aspen, spruce, and
- 1099 pine in a sky-island ecosystem of the North American Great Basin. Forest Ecology and
- 1100 Management, 491, p.119157.https://doi.org/10.1016/j.foreco.2021.119157.
- 1101 Lucas, M., Schlüter, S., Vogel, H.J. and Vetterlein, D., 2019. Roots compact the surrounding soil
- depending on the structures they encounter. *Scientific reports*, *9*(1), p.16236.
- 1103 <u>https://doi.org/10.1038/s41598-019-52665-w</u>
- 1104 Luo, C., Xu, G., Wang, Y., Wang, S., Lin, X., Hu, Y., Zhang, Z., Chang, X., Duan, J., Su, A. and Zhao,
- 1105 X., 2009. Effects of grazing and experimental warming on DOC concentrations in the soil

- solution on the Qinghai-Tibet plateau. Soil Biology and Biochemistry, 41(12), pp.2493-2500.
- 1107 <u>https://doi.org/10.1016/j.soilbio.2009.09.006</u>
- 1108 Mambelli, S., Bird, J.A., Gleixner, G., Dawson, T.E. and Torn, M.S., 2011. Relative contribution of
- 1109 foliar and fine root pine litter to the molecular composition of soil organic matter after in situ
- degradation. *Organic Geochemistry*, 42(9), pp.1099-1108.
- 1111 https://doi.org/10.1016/j.orggeochem.2011.06.008
- 1112 Mainka, M., Summerauer, L., Wasner, D., Garland, G., Gripentrog, M., Berhe, A.A., Doetterl, S.
- 1113 2022. Soil geochemistry as a driver of soil organic matter composition: insights from a soil
- 1114 chronosequence. Biogeosciences 19:1675-1689. https://doi.org/10.5194/bg-19-1675-2022
- 1115 Makiel, M. et al. (2022) 'Formation of iron oxyhydroxides as a result of glauconite weathering in
- soils of temperate climate', *Geoderma*, 416, p. 115780. Available at:
- 1117 ttps://doi.org/10.1016/j.geoderma.2022.115780...
- 1118 Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A. and Zavala, L.M., 2011. Fire effects on soil
- aggregation: a review. *Earth-Science Reviews*, 109(1-2), pp.44-60.
- 1120 <u>https://doi.org/10.1016/j.earscirev.2011.08.002</u>
- 1121 Mauer, O. and Palátová, E., 2012. Root system development in Douglas fir (Pseudotsuga
- menziesii [Mirb.] Franco) on fertile sites. Journal of Forest Science, 58(9), pp.400-
- 1123 409.https://doi.org/10.17221/94/2011-JFS.
- 1124 Mekontchou, C.G., Houle, D., Bergeron, Y., Drobyshev, I. 2020. Contrasting root system
- 1125 structure and belowground interactions between black spruce (Picea mariana (Mill.) B.S.P) and
- 1126 trembling aspen (Populus tremuloides Michx) in boreal mixed woods of eastern Canada.
- 1127 Forests. 11:127. https://doi.org/10.3390/f11020127
- 1128 Menzel, A. and Fabian, P., 1999. Growing season extended in Europe. *Nature*, 397(6721),
- 1129 pp.659-659.<u>https://doi.org/10.1038/17709</u>
- 1130 Mikutta, R., Turner, S., Schippers, A., Gentsch, N., Meyer-Stüve, S., Condron, L.M., Peltzer, D.A.,
- 1131 Richardson, S.J., Eger, A., Hempel, G. and Kaiser, K., 2019. Microbial and abiotic controls on
- 1132 mineral-associated organic matter in soil profiles along an ecosystem gradient. Scientific
- 1133 reports, 9(1), p.10294.https://doi.org/10.1038/s41598-019-46501-4.
- 1134 Mitchell, P.J., Lane, P.N. and Benyon, R.G., 2012. Capturing within catchment variation in
- 1135 evapotranspiration from montane forests using LiDAR canopy profiles with measured and
- modelled fluxes of water. Ecohydrology, 5(6), pp.708-720. https://doi.org/10.1002/eco.255
- 1137 Moldrup, P., Deepagoda, T.C., Hamamoto, S., Komatsu, T., Kawamoto, K., Rolston, D.E. and de
- 1138 Jonge, L.W., 2013. Structure-dependent water-induced linear reduction model for predicting
- 1139 gas diffusivity and tortuosity in repacked and intact soil. Vadose Zone Journal, 12(3).
- 1140 <u>https://doi.org/10.2136/vzj2013.01.0026</u>
- 1141 Monteith, D.T., Stoddard, J.L., Evans, C.D., De Wit, H.A., Forsius, M., Høgåsen, T., Wilander, A.,
- 1142 Skjelkvåle, B.L., Jeffries, D.S., Vuorenmaa, J. and Keller, B., 2007. Dissolved organic carbon

- trends resulting from changes in atmospheric deposition chemistry. *Nature*, 450(7169), pp.537-
- 1144 540. https://doi.org/10.1038/nature06316
- 1145 Moore, T.R., Trofymow, J.A., Prescott, C.E., Fyles, J. and Titus, B.D., 2006. Patterns of carbon,
- 1146 nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems,
- 1147 9, pp.46-62.https://doi.org/10.1007/s10021-004-0026-x.
- 1148 Morbidelli, R., Saltalippi, C., Flammini, A. and Govindaraju, R.S., 2018. Role of slope on
- infiltration: A review. *Journal of hydrology*, 557, pp.878-886.
- 1150 https://doi.org/10.1016/j.jhydrol.2018.01.019
- 1151 Morgan, M.D., 1969. Ecology of aspen in Gunnison County, Colorado. *American Midland*
- 1152 *Naturalist*, pp.204-228. https://doi.org/10.2307/2423831
- 1153 Morris, D. P., Zagarese, H., Williamson, C. E., Balseiro, E. G., Hargreaves, B. R., Modenutti, B., ...
- 4 & Queimalinos, C. (1995). The attenuation of solar UV radiation in lakes and the role of
- dissolved organic carbon. *Limnology and Oceanography*, 40(8), 1381-1391.
- 1156 https://doi.org/10.4319/lo.1995.40.8.1381
- 1157 Nadelhoffer, K.J., Fry, B., 1988. Nitrogen-15 and carbon-13 abundances in forest soil organic
- matter. Soil Science Society of America Journal 52:1633-1640.
- 1159 https://doi.org/10.2136/sssaj1988.03615995005200060024x
- 1160 Nédeltcheva, T.H., Piedallu, C., Gégout, J.C., Stussi, J.M., Boudot, J.P., Angeli, N. and Dambrine,
- 1161 E., 2006. Influence of granite mineralogy, rainfall, vegetation and relief on stream water
- 1162 chemistry (Vosges Mountains, north-eastern France). Chemical Geology, 231(1-2), pp.1-15.
- 1163 <u>https://doi.org/10.1016/j.chemgeo.2005.12.012</u>
- Neris, J., Jiménez, C., Fuentes, J., Morillas, G. and Tejedor, M., 2012. Vegetation and land-use
- effects on soil properties and water infiltration of Andisols in Tenerife (Canary Islands, Spain).
- 1166 *Catena*, 98, pp.55-62. https://doi.org/10.1016/j.catena.2012.06.006
- 1167 Neville, J., Tessier, J.L., Morrison, I., Scarratt, J., Canning, B. and Klironomos, J.N., 2002. Soil
- depth distribution of ecto-and arbuscular mycorrhizal fungi associated with Populus
- tremuloides within a 3-year-old boreal forest clear-cut. Applied Soil Ecology, 19(3), pp.209-216...
- 1170 https://doi.org/10.1016/S0929-1393(01)00193-7.
- 1171 Neubauer, E., vd Kammer, F., & Hofmann, T. (2013). Using FLOWFFF and HPSEC to determine
- trace metal—colloid associations in wetland runoff. Water research, 47(8), 2757-2769.
- 1173 https://doi.org/10.1016/j.watres.2013.02.030
- 1174 Nicoll, B.C., Berthier, S., Achim, A., Gouskou, K., Danjon, F. and Van Beek, L.P.H., 2006. The
- architecture of Picea sitchensis structural root systems on horizontal and sloping terrain. Trees,
- 1176 *20*, pp.701-712.https://doi.org/10.1007/s00468-006-0085-z.
- 1177 Nikolakopoulou, M., Argerich, A., Drummond, J.D., Gacia, E., Martí, E., Sorolla, A. and Sabater,
- 1178 F., 2018. Emergent macrophyte root architecture controls subsurface solute transport. Water
- 1179 Resources Research, 54(9), pp.5958-5972. https://doi.org/10.1029/2017WR022381

- 1180 Nimmo, J.R. and Perkins, K.S., 2002. 2.6 Aggregate stability and size distribution. Methods of soil
- analysis: part 4 physical methods, 5, pp.317-328. https://doi.org/10.2136/sssabookser5.4.c14
- Nye, P.H., 1981. Changes of pH across the rhizosphere induced by roots. Plant and soil, 61,
- 1183 pp.7-26. https://doi.org/10.1007/BF02277359
- Norris, C. E., Quideau, S. A., & Oh, S. W. (2016). Microbial utilization of double-labeled aspen
- litter in boreal aspen and spruce soils. Soil Biology and Biochemistry, 100, 9-20.
- 1186 https://doi.org/10.1016/j.soilbio.2016.05.013
- 1187 Oades, J.M., 1984. Soil organic matter and structural stability: mechanisms and implications for
- 1188 management. Plant and soil, 76, pp.319-337. https://doi.org/10.1007/BF02205590
- 1189 Okada, H. (1971). Classification of sandstone: analysis and proposal. *The Journal of Geology*,
- 1190 79(5), 509-525. https://doi.org/10.1306/D42692BA-2B26-11D7-8648000102C1865D
- Ouyang, N., Zhang, Y., Sheng, H., Zhou, Q., Huang, Y. and Yu, Z., 2021. Clay mineral composition
- 1192 of upland soils and its implication for pedogenesis and soil taxonomy in subtropical China.
- 1193 Scientific Reports, 11(1), p.9707.https://doi.org/10.1038/s41598-021-89049-y.
- 1194 Pagano, T., Bida, M., & Kenny, J. E. (2014). Trends in levels of allochthonous dissolved organic
- carbon in natural water: a review of potential mechanisms under a changing
- 1196 climate. Water, 6(10), 2862-2897. https://doi.org/10.3390/w6102862
- 1197 Panhwar, Q.A., Naher, U.A., Shamshuddin, J., Othman, R. and Ismail, M.R., 2016. Applying
- 1198 limestone or basalt in combination with bio-fertilizer to sustain rice production on an acid
- 1199 sulfate soil in Malaysia. Sustainability, 8(7), p.700. https://doi.org/10.3390/su8070700
- 1200 Paré, D. and Bergeron, Y., 1996. Effect of colonizing tree species on soil nutrient availability in a
- 1201 clay soil of the boreal mixedwood. Canadian Journal of Forest Research, 26(6), pp.1022-1031.
- 1202 https://doi.org/10.1139/x26-113
- 1203 Popenoe, J.H., Bevis, K.A., Gordon, B.R., Sturhan, N.K. and Hauxwell, D.L., 1992. Soil-vegetation
- 1204 relationships in Franciscan terrain of northwestern California. Soil Science Society of America
- 1205 Journal, 56(6), pp.1951-1959. https://doi.org/10.2136/sssaj1992.03615995005600060050x
- 1206 Pourret, O., Davranche, M., Gruau, G., & Dia, A. (2007). Rare earth elements complexation with
- 1207 humic acid. *Chemical Geology*, 243(1-2), 128-141.
- 1208 https://doi.org/10.1016/j.chemgeo.2007.05.018
- 1209 Ramesh, T., Bolan, N.S., Kirkham, M.B., Wijesekara, H., Kanchikerimath, M., Rao, C.S., Sandeep,
- 1210 S., Rinklebe, J., Ok, Y.S., Choudhury, B.U. and Wang, H., 2019. Soil organic carbon dynamics:
- 1211 Impact of land use changes and management practices: A review. Advances in agronomy, 156,
- 1212 pp.1-107.https://doi.org/10.1016/bs.agron.2019.02.001.
- 1213 Reisman, D., Rutkowski, T., Smart, P., Gusek, J. and Sieczkowski, M., 2009. Passive treatment
- 1214 and monitoring at the standard mine superfund site Crested Butte, CO. *Proceedings America*
- 1215 Society of Mining and Reclamation, pp.1107-1128.

- 1216 Rhoades, A.M., Ullrich, P.A. and Zarzycki, C.M., 2018. Projecting 21st century snowpack trends
- in western USA mountains using variable-resolution CESM. Climate Dynamics, 50(1-2), pp.261-
- 1218 288.https://doi.org/10.1007/s00382-017-3606-0.
- 1219 Riveros-Iregui, D.A., McGlynn, B.L., Marshall, L.A., Welsch, D.L., Emanuel, R.E. and Epstein, H.E.,
- 1220 2011. A watershed-scale assessment of a process soil CO2 production and efflux model. Water
- 1221 Resources Research, 47(10). https://doi.org/10.1029/2010WR009941
- 1222 Roulet, N. and Moore, T.R., 2006. Browning the waters. *Nature*, 444(7117), pp.283-284.
- 1223 https://doi.org/10.1038/444283a
- 1224 Burnett, B. N., Meyer, G. A., & McFadden, L. D. (2008). Aspect-related microclimatic influences
- 1225 on slope forms and processes, northeastern Arizona. Journal of Geophysical Research: Earth
- 1226 Surface, 113(F3). https://doi.org/10.1029/2010WR009941
- 1227 Román Dobarco, M., Jacobson, A.R. and Van Miegroet, H., 2021. Chemical composition of soil
- 1228 organic carbon from mixed aspen-conifer forests characterized with Fourier transform infrared
- spectroscopy. European Journal of Soil Science, 72(3), pp.1410-1430.
- 1230 https://doi.org/10.1111/ejss.13065.
- 1231 Rossi, A.M., Hirmas, D.R., Graham, R.C. and Sternberg, P.D., 2008. Bulk density determination
- by automated three-dimensional laser scanning. Soil Science Society of America Journal, 72(6),
- 1233 pp.1591-1593. https://doi.org/10.2136/sssaj2008.0072N
- 1234 Rutter, E.B., Ruiz Diaz, D. and Hargrave, L.M., 2022. Evaluation of Mehlich-3 for determination
- of cation exchange capacity in Kansas soils. Soil Science Society of America Journal, 86(1),
- 1236 pp.146-156. https://doi.org/10.1002/saj2.20354
- 1237 Sadnes, A., Eldhuset, T.D., Wollebaek, G. 2005. Organic acids in root exudates and soil solution
- 1238 of Norway spruce and silver birch. Soil Biology and Biochemistry 37:259-k269.
- 1239 https://doi.org/10.1016/j.soilbio.2004.07.036
- 1240 Sae-Tun, O., Bodner, G., Rosinger, C., Zechmeister-Boltenstern, S., Mentler, A. and Keiblinger,
- 1241 K., 2022. Fungal biomass and microbial necromass facilitate soil carbon sequestration and
- aggregate stability under different soil tillage intensities. Applied Soil Ecology, 179, p.104599.
- 1243 https://doi.org/10.1016/j.apsoil.2022.104599
- 1244 Scharlemann, J.P., Tanner, E.V., Hiederer, R. and Kapos, V., 2014. Global soil carbon:
- 1245 understanding and managing the largest terrestrial carbon pool. Carbon management, 5(1),
- 1246 pp.81-91. https://doi.org/10.4155/cmt.13.77
- 1247 Schjønning, P., Thomsen, I.K., Møberg, J.P., de Jonge, H., Kristensen, K. and Christensen, B.T.,
- 1248 1999. Turnover of organic matter in differently textured soils: I. Physical characteristics of
- structurally disturbed and intact soils. *Geoderma*, 89(3-4), pp.177-198.
- 1250 https://doi.org/10.1016/S0016-7061(98)00083-4
- 1251 Schneider, C.A., Rasband, W.S. and Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image
- analysis. *Nature methods*, 9(7), pp.671-675. https://doi.org/10.1038/nmeth.2089

- 1253 Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and Soil Survey Staff. 2012. Field book for
- describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National
- 1255 Soil Survey Center, Lincoln, NE.
- 1256 Seyfried, G.S., Canham, C.D., Dalling, J.W. and Yang, W.H., 2021. The effects of tree-mycorrhizal
- 1257 type on soil organic matter properties from neighborhood to watershed scales. Soil Biology and
- 1258 Biochemistry, 161, p.108385. https://doi.org/10.1016/j.soilbio.2021.108385.
- 1259 Shand, C.A., Williams, B.L., Coutts, G., 2008. Determination of N-species in soil extracts using
- 1260 microplate techniques. *Talanta* 74 ,648-654; 10.1016/j.talanta.2007.06.039
- 1261 Shen, R., Pennell, K.G. and Suuberg, E.M., 2013. Influence of soil moisture on soil gas vapor
- 1262 concentration for vapor intrusion. *Environmental Engineering Science*, 30(10), pp.628-637.
- 1263 https://doi.org/10.1089/ees.2013.0133
- 1264 Shepperd, W., Rogers, P.C. and Bartos, D., 2006. Ecology, management, and restoration of
- aspen in the Sierra Nevada. https://doi.org/10.2737/RMRS-GTR-178.
- 1266 Silver, W.L., Lugo, A.E. and Keller, M., 1999. Soil oxygen availability and biogeochemistry along
- 1267 rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry, 44,
- 1268 pp.301-328.https://doi.org/10.1007/BF00996995.
- 1269 Singer, M.J., Southard, R.J., Warrington, D.N. and Janitzky, P., 1992. Stability of synthetic sand-
- 1270 clay aggregates after wetting and drying cycles. Soil Science Society of America Journal, 56(6),
- 1271 pp.1843-1848.Le Bissonnais, Y., 1996. Aggregate stability and assessment of soil crustability and
- erodibility: I. Theory and methodology. Eur. J. Soil Sci. 47 (4), 425–437.
- 1273 https://doi.org/10.2136/sssaj1992.03615995005600060032x
- 1274 Singh, S.H.I.P.R.A., 2018. Understanding the role of slope aspect in shaping the
- 1275 vegetationattributes and soil properties in Montane ecosystems. Tropical Ecology, 59(3),
- 1276 pp.417-430.
- 1277 Sinsabaugh, R.L. and Moorhead, D.L., 1994. Resource allocation to extracellular enzyme
- 1278 production: a model for nitrogen and phosphorus control of litter decomposition. Soil biology
- and biochemistry, 26(10), pp.1305-1311. https://doi.org/10.1016/0038-0717(94)90211-9.
- 1280 Six, J., Bossuyt, H., Degryze, S. and Denef, K., 2004. A history of research on the link between
- 1281 (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and tillage research, 79(1),
- 1282 pp.7-31. https://doi.org/10.1016/j.still.2004.03.008
- 1283 Six, J., Conant, R.T., Paul, E.A. and Paustian, K., 2002. Stabilization mechanisms of soil organic
- matter: implications for C-saturation of soils. *Plant and soil*, 241, pp.155
- 1285 176. https://doi.org/10.1023/A:1016125726789
- 1286 Six, J. and Jastrow, J.D., 2002. Organic matter turnover. Encyclopedia of soil science, 10.
- 1287 Soil Survey Staff, Natural Resources Conservation Service, United States Department of
- 1288 Agriculture. Web Soil Survey. Available online at the following link:
- 1289 http://websoilsurvey.sc.egov.usda.gov/. Accessed [5/21/2023].

Soil Survey, S., 2014,. Keys to soil taxonomy. 1291 Sokol, N.W., Whalen, E.D., Jilling, A., Kallenbach, C., Pett-Ridge, J. and Georgiou, K., 2022. Global 1292 distribution, formation and fate of mineral-associated soil organic matter under a changing 1293 climate: A trait-based perspective. Functional Ecology, 36(6), pp.1411-1294 1429.https://doi.org/10.1111/1365-2435.14040 1295 Solly, E.F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F. and Schmidt, M.W., 2020. A 1296 critical evaluation of the relationship between the effective cation exchange capacity and soil 1297 organic carbon content in Swiss forest soils. Frontiers in Forests and Global Change, 3, 1298 p.98.https://doi.org/10.3389/ffgc.2020.00098. 1299 Souza, L.F., Hirmas, D.R., Sullivan, P.L., Reuman, D.C., Kirk, M.F., Li, L., Ajami, H., Wen, H., Sarto, 1300 M.V., Loecke, T.D. and Rudick, A.K., 2023. Root distributions, precipitation, and soil structure 1301 converge to govern soil organic carbon depth distributions. Geoderma, 437, p.116569. 1302 https://doi.org/10.1016/j.geoderma.2023.116569 1303 Staff, S. S., 1999,. Soil taxonomy: a basic system of soil classification for making and interpreting 1304 soil surveys. *Agriculture handbook*, 436. 1305 Stanley, E. H., Powers, S. M., Lottig, N. R., Buffam, I., & Crawford, J. T. (2012). Contemporary 1306 changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC 1307 management?. Freshwater Biology, 57, 26-42. 1308 https://doi.org/10.1111/j.1365-2427.2011.02613.x 1309 1310 Stătescu, F., Zaucă, D.C. and Pavel, L.V., 2013. Soil structure and water-stable aggregates. 1311 Environmental Engineering & Management Journal (EEMJ), 1312 12(4).https://doi.org/10.30638/eemj.2013.091. 1313 Sternberg, P.D., Anderson, M.A., Graham, R.C., Beyers, J.L. and Tice, K.R., 1996. Root 1314 distribution and seasonal water status in weathered granitic bedrock under chaparral. 1315 Geoderma, 72(1-2), pp.89-98.https://doi.org/10.1016/0016-7061(96)00019-5. 1316 Stone, E.L. and Kalisz, P.J., 1991. On the maximum extent of tree roots. Forest ecology and 1317 management, 46(1-2), pp.59-102. https://doi.org/10.1016/0378-1127(91)90245-Q 1318 Stone, M.M., DeForest, J.L. and Plante, A.F., 2014. Changes in extracellular enzyme activity and 1319 microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil 1320 Biology and Biochemistry, 75, pp.237-247.https://doi.org/10.1016/j.soilbio.2014.04.017. Stump, L.M. and Binkley, D., 1993. Relationships between litter quality and nitrogen availability 1321 1322 in Rocky Mountain forests. Canadian Journal of Forest Research, 23(3), pp.492-1323 502. https://doi.org/10.1139/x93-067

1325 (2019). Exploring the effect of aspect to inform future earthcasts of climate-driven changes in 1326 weathering of shale. Journal of Geophysical Research: Earth Surface, 124(4), 974-993. 1327 https://doi.org/10.1029/2017JF004556 1328 Sullivan, P.L., Billings, S.A., Hirmas, D., Li, L., Zhang, X., Ziegler, S., Murenbeeld, K., Ajami, H., 1329 Guthrie, A., Singha, K. and Giménez, D., 2022. Embracing the dynamic nature of soil structure: A 1330 paradigm illuminating the role of life in critical zones of the Anthropocene. Earth-Science 1331 Reviews, 225, p.103873. https://doi.org/10.1016/j.earscirev.2021.103873. 1332 Tang, J., & Johannesson, K. H. (2003). Speciation of rare earth elements in natural terrestrial 1333 waters: assessing the role of dissolved organic matter from the modeling approach. Geochimica 1334 et Cosmochimica Acta, 67(13), 2321-2339. https://doi.org/10.1016/S0016-7037(02)01413-8 1335 Tew, R.K., 1968. Properties of soil under aspen and herb-shrub cover (Vol. 78). US Department 1336 of Agriculture, Forest Service, Intermountain Forest & Range Experiment Station. 1337 Tisdall, J.M. and OADES, J.M., 1982. Organic matter and water-stable aggregates in soils. Journal 1338 of soil science, 33(2), pp.141-163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x 1339 1340 von Lützow, M., Kögel-Knabner, I., Ludwig, B., Matzner, E., Flessa, H., Ekschmitt, K., 1341 Guggenberger, G., Marschner, B. and Kalbitz, K., 2008. Stabilization mechanisms of organic 1342 matter in four temperate soils: Development and application of a conceptual model. Journal of 1343 Plant Nutrition and Soil Science, 171(1), pp.111-124. https://doi.org/10.1002/jpln.200700047 1344 1345 Wadgymar, S.M., Ogilvie, J.E., Inouye, D.W., Weis, A.E. and Anderson, J.T., 2018. Phenological 1346 responses to multiple environmental drivers under climate change: insights from a long-term 1347 observational study and a manipulative field experiment. New Phytologist, 218(2), pp.517-1348 529.https://doi.org/10.1111/nph.15029. 1349 Wainwright, Haruko M., Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, 1350 Michelle E. Newcomer, Baptiste Dafflon et al. Watershed zonation through hillslope clustering 1351 for tractably quantifying above-and below-ground watershed heterogeneity and functions. 1352 Hydrology and Earth System Sciences 26, no. 2 (2022): 429-444. https://doi.org/10.5194/hess-1353 26-429-2022, 2022 1354 Wang, Y., Gao, S., Li, C., Zhang, J. and Wang, L., 2016. Effects of temperature on soil organic 1355 carbon fractions contents, aggregate stability and structural characteristics of humic substances 1356 in a Mollisol. Journal of Soils and Sediments, 16, pp.1849-1857.https://doi.org/10.1007/s11368-1357 016-1379-4

Sullivan, P. L., Goddéris, Y., Shi, Y., Gu, X., Schott, J., Hasenmueller, E. A., ... & Brantley, S. L.

1358 Wang, Q., Xiao, J., Ding, J., Zou, T. 2021. Differences in root exudate inputs and rhizosphere 1359 effects on soil N transformation between deciduous and evergreen trees. Plant and Soil 458 1360 https://doi.org/10.1007/s11104-019-04156-0 1361 Wasner, D., Abramoff, R., Griepentrog, M., Venegas, E.Z., Boeckx, P., & Doetterl, S. (2024) The role 1362 of climate, mineralogy and stable aggregates for soil organic carbon dynamics along a 1363 geoclimatic gradient. Global Biogeochemical Cycles, 38,e2023GB007934. 1364 https://doi.org/10.1029/2023GB007934 1365 Weil, R.R. and Brady, N.C., 2017. The nature and properties of soils (Fifteen Ed). 1366 White, T., Brantley, S., Banwart, S., Chorover, J., Dietrich, W., Derry, L., et al., 2015. The role of 1367 critical zone observatories in critical zone science. In: Developments in Earth Surface Processes, 1368 vol. 19. Elsevier, pp. 15-78. https://doi.org/10.1016/B978-0-444-63369-9.00002-1 1369 Witty, J.H., Graham, R.C., Hubbert, K.R., Doolittle, J.A. and Wald, J.A., 2003. Contributions of 1370 water supply from the weathered bedrock zone to forest soil quality. Geoderma, 114(3-4), 1371 pp.389-400.https://doi.org/10.1016/S0016-7061(03)00051-X. 1372 Woldeselassie, M., Van Miegroet, H., Gruselle, M.C. and Hambly, N., 2012. Storage and stability 1373 of soil organic carbon in aspen and conifer forest soils of northern Utah. Soil Science Society of 1374 America Journal, 76(6), pp.2230-2240..https://doi.org/10.2136/sssaj2011.0364. 1375 Woolf, D., and Lehmann, J. 2019. Microbial models with minimal mineral protection can explain 1376 long-term soil organic carbon persistence. Sci Rep 9, 6522. https://doi.org/10.1038/s41598-1377 019-43026-8 1378 Yang, J. Q., Zhang, X., Bourg, I. C., and Stone, H. A., 2021. 4D imaging reveals mechanisms of 1379 clay-carbon protection and release. *Nature communications*, 12(1), 622. 1380 Ye, C., Chen, D., Hall, S.J., Pan, S., Yan, X., Bai, T., Guo, H., Zhang, Y., Bai, Y. and Hu, S., 2018. 1381 Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and 1382 geochemical controls. Ecology Letters, 21(8), pp.1162-1173.https://doi.org/10.1111/ele.13083. 1383 York. p. 327-352, doi:10.1016/B978-0-08-095975-7.01317-6. 1384 Zeng, R., Wei, Y., Huang, J., Chen, X. and Cai, C., 2021. Soil organic carbon stock and fractional 1385 distribution across central-south China. International Soil and Water Conservation Research, 1386 9(4), pp.620-630. https://doi.org/10.1016/j.iswcr.2021.04.004 1387 Zhai, J., Liu, R., Liu, J., Zhao, G. and Huang, L., 2014. Radiative forcing over China due to albedo 1388 change caused by land cover change during 1990-2010. Journal of Geographical Sciences, 24, 1389 pp.789-801. https://doi.org/10.1007/s11442-014-1120-4

https://doi.org/10.5194/egusphere-2025-70 Preprint. Discussion started: 7 February 2025 © Author(s) 2025. CC BY 4.0 License.

1390 1391 1392	Zhang, Y., Niu, J., Yu, X., Zhu, W. and Du, X., 2015. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems. <i>Forest Systems</i> , <i>24</i> (1), p.12. https://doi.org/10.5424/fs/2015241-06048 .
1393 1394 1395	Zhao, D., Xu, M., Liu, G., Ma, L., Zhang, S., Xiao, T. and Peng, G., 2017. Effect of vegetation type on microstructure of soil aggregates on the Loess Plateau, China. <i>Agriculture, ecosystems & environment</i> , 242, pp.1-8. https://doi.org/10.1016/j.agee.2017.03.014
1396 1397 1398 1399	Zhi, W., Williams, K.H., Carroll, R.W., Brown, W., Dong, W., Kerins, D. and Li, L., 2020. Significant stream chemistry response to temperature variations in a high-elevation mountain watershed. <i>Communications Earth & Environment</i> , 1(1), p.43. https://doi.org/10.1038/s43247-020-00039-w .
1400	